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1 Functions — Alphabetical List

adapt
Adapt neural network to data as it is simulated

Syntax

[net,Y,E,Pf,Af,tr] = adapt(net,P,T,Pi,Ai)

To Get Help

Type help network/adapt.

Description

This function calculates network outputs and errors after each presentation of an input.

[net,Y,E,Pf,Af,tr] = adapt(net,P,T,Pi,Ai) takes

net Network
P Network inputs
T Network targets (default = zeros)
Pi Initial input delay conditions (default = zeros)
Ai Initial layer delay conditions (default = zeros)

and returns the following after applying the adapt function net.adaptFcn with the
adaption parameters net.adaptParam:

net Updated network
Y Network outputs
E Network errors
Pf Final input delay conditions
Af Final layer delay conditions
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tr Training record (epoch and perf)

Note that T is optional and is only needed for networks that require targets. Pi and Pf
are also optional and only need to be used for networks that have input or layer delays.

adapt’s signal arguments can have two formats: cell array or matrix.

The cell array format is easiest to describe. It is most convenient for networks with
multiple inputs and outputs, and allows sequences of inputs to be presented,

P Ni-by-TS cell array Each element P{i,ts} is an Ri-by-Q
matrix.

T Nt-by-TS cell array Each element T{i,ts} is a Vi-by-Q
matrix.

Pi Ni-by-ID cell array Each element Pi{i,k} is an Ri-by-Q
matrix.

Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q
matrix.

Y No-by-TS cell array Each element Y{i,ts} is a Ui-by-Q
matrix.

E No-by-TS cell array Each element E{i,ts} is a Ui-by-Q
matrix.

Pf Ni-by-ID cell array Each element Pf{i,k} is an Ri-by-Q
matrix.

Af Nl-by-LD cell array Each element Af{i,k} is an Si-by-Q
matrix.

where

Ni = net.numInputs

Nl = net.numLayers

No = net.numOutputs

ID = net.numInputDelays

LD = net.numLayerDelays

TS = Number of time steps
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Q = Batch size
Ri = net.inputs{i}.size

Si = net.layers{i}.size

Ui = net.outputs{i}.size

The columns of Pi, Pf, Ai, and Af are ordered from oldest delay condition to most recent:

Pi{i,k} = Input i at time ts = k - ID
Pf{i,k} = Input i at time ts = TS + k - ID
Ai{i,k} = Layer output i at time ts = k - LD
Af{i,k} = Layer output i at time ts = TS + k - LD

The matrix format can be used if only one time step is to be simulated (TS = 1). It is
convenient for networks with only one input and output, but can be used with networks
that have more.

Each matrix argument is found by storing the elements of the corresponding cell array
argument in a single matrix:

P (sum of Ri)-by-Q matrix
T (sum of Vi)-by-Q matrix
Pi (sum of Ri)-by-(ID*Q) matrix
Ai (sum of Si)-by-(LD*Q) matrix
Y (sum of Ui)-by-Q matrix
E (sum of Ui)-by-Q matrix
Pf (sum of Ri)-by-(ID*Q) matrix
Af (sum of Si)-by-(LD*Q) matrix

Examples

Here two sequences of 12 steps (where T1 is known to depend on P1) are used to define
the operation of a filter.

p1 = {-1  0 1 0 1 1 -1  0 -1 1 0 1};
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t1 = {-1 -1 1 1 1 2  0 -1 -1 0 1 1};

Here linearlayer is used to create a layer with an input range of [-1 1], one neuron,
input delays of 0 and 1, and a learning rate of 0.1. The linear layer is then simulated.

net = linearlayer([0 1],0.1);

Here the network adapts for one pass through the sequence.

The network’s mean squared error is displayed. (Because this is the first call to adapt,
the default Pi is used.)

[net,y,e,pf] = adapt(net,p1,t1);

mse(e)

Note that the errors are quite large. Here the network adapts to another 12 time steps
(using the previous Pf as the new initial delay conditions).

p2 = {1 -1 -1 1 1 -1  0 0 0 1 -1 -1};

t2 = {2  0 -2 0 2  0 -1 0 0 1  0 -1};

[net,y,e,pf] = adapt(net,p2,t2,pf);

mse(e)

Here the network adapts for 100 passes through the entire sequence.

p3 = [p1 p2];

t3 = [t1 t2];

for i = 1:100

  [net,y,e] = adapt(net,p3,t3);

end

mse(e)

The error after 100 passes through the sequence is very small. The network has adapted
to the relationship between the input and target signals.

Algorithms

adapt calls the function indicated by net.adaptFcn, using the adaption parameter
values indicated by net.adaptParam.

Given an input sequence with TS steps, the network is updated as follows: Each step in
the sequence of inputs is presented to the network one at a time. The network’s weight
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and bias values are updated after each step, before the next step in the sequence is
presented. Thus the network is updated TS times.

See Also
sim | init | train | revert

Introduced before R2006a
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adaptwb
Adapt network with weight and bias learning rules

Syntax

[net,ar,Ac] = adapt(net,Pd,T,Ai)

Description

This function is normally not called directly, but instead called indirectly through the
function adapt after setting a network’s adaption function (net.adaptFcn) to this
function.

[net,ar,Ac] = adapt(net,Pd,T,Ai) takes these arguments,

net Neural network
Pd Delayed processed input states and inputs
T Targets
Ai Initial layer delay states

and returns

net Neural network after adaption
ar Adaption record
Ac Combined initial layer states and layer outputs

Examples

Linear layers use this adaption function. Here a linear layer with input delays of 0 and
1, and a learning rate of 0.5, is created and adapted to produce some target data t when
given some input data x. The response is then plotted, showing the network’s error going
down over time.
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x = {-1  0 1 0 1 1 -1  0 -1 1 0 1};

t = {-1 -1 1 1 1 2  0 -1 -1 0 1 1};

net = linearlayer([0 1],0.5);

net.adaptFcn

[net,y,e,xf] = adapt(net,x,t);

plotresponse(t,y)

See Also
adapt

Introduced in R2010b
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adddelay
Add delay to neural network response

Syntax

net = adddelay(net,n)

Description

net = adddelay(net,n) takes these arguments,

net Neural network
n Number of delays

and returns the network with input delay connections increased, and output feedback
delays decreased, by the specified number of delays n. The result is a network that
behaves identically, except that outputs are produced n timesteps later.

If the number of delays n is not specified, a default of one delay is used.

Examples

Time Delay Network

This example creates, trains, and simulates a time delay network in its original form,
on an input time series X and target series T. Then the delay is removed and later added
back. The first and third outputs will be identical, while the second result will include a
new prediction for the following step.

[X,T] = simpleseries_dataset;

net1 = timedelaynet(1:2,20);

[Xs,Xi,Ai,Ts] = preparets(net1,X,T);

net1 = train(net1,Xs,Ts,Xi);

y1 = net1(Xs,Xi);

view(net1)
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net2 = removedelay(net1);

[Xs,Xi,Ai,Ts] = preparets(net2,X,T);

y2 = net2(Xs,Xi);

view(net2)

net3 = adddelay(net2);

[Xs,Xi,Ai,Ts] = preparets(net3,X,T);

y3 = net3(Xs,Xi);

view(net3)
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See Also
closeloop | openloop | removedelay

Introduced in R2010b
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boxdist
Distance between two position vectors

Syntax

d = boxdist(pos)

Description

boxdist is a layer distance function that is used to find the distances between the
layer’s neurons, given their positions.

d = boxdist(pos) takes one argument,

pos N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.

boxdist is most commonly used with layers whose topology function is gridtop.

Examples

Here you define a random matrix of positions for 10 neurons arranged in three-
dimensional space and then find their distances.

pos = rand(3,10);

d = boxdist(pos)

Network Use

To change a network so that a layer’s topology uses boxdist, set
net.layers{i}.distanceFcn to 'boxdist'.

In either case, call sim to simulate the network with boxdist.
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Algorithms

The box distance D between two position vectors Pi and Pj from a set of S vectors is

Dij = max(abs(Pi-Pj))

See Also
dist | linkdist | mandist | sim

Introduced before R2006a
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bttderiv
Backpropagation through time derivative function

Syntax

bttderiv('dperf_dwb',net,X,T,Xi,Ai,EW)

bttderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description

This function calculates derivatives using the chain rule from a network’s performance
back through the network, and in the case of dynamic networks, back through time.

bttderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and
biases, where R and S are the number of input and output elements and Q is the number
of samples (and N and M are the number of input and output signals, Ri and Si are the
number of each input and outputs elements, and TS is the number of timesteps).

bttderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect
to the network’s weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are
calculated.

1-14



 bttderiv

[x,t] = simplefit_dataset;

net = feedforwardnet(20);

net = train(net,x,t);

y = net(x);

perf = perform(net,t,y);

gwb = bttderiv('dperf_dwb',net,x,t)

jwb = bttderiv('de_dwb',net,x,t)

See Also
defaultderiv | fpderiv | num2deriv | num5deriv | staticderiv

Introduced in R2010b
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cascadeforwardnet
Cascade-forward neural network

Syntax

cascadeforwardnet(hiddenSizes,trainFcn)

Description

Cascade-forward networks are similar to feed-forward networks, but include a connection
from the input and every previous layer to following layers.

As with feed-forward networks, a two-or more layer cascade-network can learn any finite
input-output relationship arbitrarily well given enough hidden neurons.

cascadeforwardnet(hiddenSizes,trainFcn) takes these arguments,

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns a new cascade-forward neural network.

Examples

Create and Train a Cascade Network

Here a cascade network is created and trained on a simple fitting problem.

[x,t] = simplefit_dataset;

net = cascadeforwardnet(10);

net = train(net,x,t);

view(net)

y = net(x);

perf = perform(net,y,t)
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perf =

   1.9372e-05

See Also

See Also
feedforwardnet | network

Topics
“Create, Configure, and Initialize Multilayer Neural Networks”
“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced in R2010b
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catelements
Concatenate neural network data elements

Syntax

catelements(x1,x2,...,xn)

[x1; x2; ... xn]

Description

catelements(x1,x2,...,xn) takes any number of neural network data values, and
merges them along the element dimension (i.e., the matrix row dimension).

If all arguments are matrices, this operation is the same as [x1; x2; ... xn].

If any argument is a cell array, then all non-cell array arguments are enclosed in cell
arrays, and then the matrices in the same positions in each argument are concatenated.

Examples

This code concatenates the elements of two matrix data values.

x1 = [1 2 3; 4 7 4]

x2 = [5 8 2; 4 7 6; 2 9 1]

y = catelements(x1,x2)

This code concatenates the elements of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

x2 = {[2 1 3] [4 5 6]; [2 5 4] [9 7 5]}

y = catelements(x1,x2)

See Also
nndata | numelements | getelements | setelements | catsignals | catsamples
| cattimesteps
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Introduced in R2010b
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catsamples
Concatenate neural network data samples

Syntax

catsamples(x1,x2,...,xn)

[x1 x2 ... xn]

catsamples(x1,x2,...,xn,'pad',v)

Description

catsamples(x1,x2,...,xn) takes any number of neural network data values, and
merges them along the samples dimension (i.e., the matrix column dimension).

If all arguments are matrices, this operation is the same as [x1 x2 ... xn].

If any argument is a cell array, then all non-cell array arguments are enclosed in cell
arrays, and then the matrices in the same positions in each argument are concatenated.

catsamples(x1,x2,...,xn,'pad',v) allows samples with varying numbers of
timesteps (columns of cell arrays) to be concatenated by padding the shorter time series
with the value v, until they are the same length as the longest series. If v is not specified,
then the value NaN is used, which is often used to represent unknown or don't-care inputs
or targets.

Examples

This code concatenates the samples of two matrix data values.

x1 = [1 2 3; 4 7 4]

x2 = [5 8 2; 4 7 6]

y = catsamples(x1,x2)

This code concatenates the samples of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
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x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}

y = catsamples(x1,x2)

Here the samples of two cell array data values, with unequal numbers of timesteps, are
concatenated.

x1 = {1 2 3 4 5};

x2 = {10 11 12};

y = catsamples(x1,x2,'pad')

See Also
nndata | numsamples | getsamples | setsamples | catelements | catsignals |
cattimesteps

Introduced in R2010b

1-21



1 Functions — Alphabetical List

catsignals
Concatenate neural network data signals

Syntax

catsignals(x1,x2,...,xn)

{x1; x2; ...; xn}

Description

catsignals(x1,x2,...,xn) takes any number of neural network data values, and
merges them along the element dimension (i.e., the cell row dimension).

If all arguments are matrices, this operation is the same as {x1; x2; ...; xn}.

If any argument is a cell array, then all non-cell array arguments are enclosed in cell
arrays, and the cell arrays are concatenated as [x1; x2; ...; xn].

Examples

This code concatenates the signals of two matrix data values.

x1 = [1 2 3; 4 7 4]

x2 = [5 8 2; 4 7 6]

y = catsignals(x1,x2)

This code concatenates the signals of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}

y = catsignals(x1,x2)

See Also
nndata | numsignals | getsignals | setsignals | catelements | catsamples |
cattimesteps
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Introduced in R2010b
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cattimesteps
Concatenate neural network data timesteps

Syntax

cattimesteps(x1,x2,...,xn)

{x1 x2 ... xn}

Description

cattimesteps(x1,x2,...,xn) takes any number of neural network data values, and
merges them along the element dimension (i.e., the cell column dimension).

If all arguments are matrices, this operation is the same as {x1 x2 ... xn}.

If any argument is a cell array, all non-cell array arguments are enclosed in cell arrays,
and the cell arrays are concatenated as [x1 x2 ... xn].

Examples

This code concatenates the elements of two matrix data values.

x1 = [1 2 3; 4 7 4]

x2 = [5 8 2; 4 7 6]

y = cattimesteps(x1,x2)

This code concatenates the elements of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}

y = cattimesteps(x1,x2)

See Also
nndata | numtimesteps | gettimesteps | settimesteps | catelements |
catsignals | catsamples
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Introduced in R2010b
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cellmat
Create cell array of matrices

Syntax

cellmat(A,B,C,D,v)

Description

cellmat(A,B,C,D,v) takes four integer values and one scalar value v, and returns an
A-by-B cell array of C-by-D matrices of value v. If the value v is not specified, zero is used.

Examples

Here two cell arrays of matrices are created.

cm1 = cellmat(2,3,5,4)

cm2 = cellmat(3,4,2,2,pi)

See Also
nndata

Introduced in R2010b
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closeloop
Convert neural network open-loop feedback to closed loop

Syntax

net = closeloop(net)

[net,xi,ai] = closeloop(net,xi,ai)

Description

net = closeloop(net) takes a neural network and closes any open-loop feedback. For
each feedback output i whose property net.outputs{i}.feedbackMode is 'open',
it replaces its associated feedback input and their input weights with layer weight
connections coming from the output. The net.outputs{i}.feedbackMode property
is set to 'closed', and the net.outputs{i}.feedbackInput property is set to an
empty matrix. Finally, the value of net.outputs{i}.feedbackDelays is added to
the delays of the feedback layer weights (i.e., to the delays values of the replaced input
weights).

[net,xi,ai] = closeloop(net,xi,ai) converts an open-loop network and its
current input delay states xi and layer delay states ai to closed-loop form.

Examples

Convert NARX Network to Closed-Loop Form

This example shows how to design a NARX network in open-loop form, then convert it to
closed-loop form.

[X,T] = simplenarx_dataset;

net = narxnet(1:2,1:2,10);

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

net = train(net,Xs,Ts,Xi,Ai);

view(net)

Yopen = net(Xs,Xi,Ai)
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net = closeloop(net)

view(net)

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

Ycloesed = net(Xs,Xi,Ai);

Convert Delay States

For examples on using closeloop and openloop to implement multistep prediction, see
narxnet and narnet.

See Also
narnet | narxnet | noloop | openloop

Introduced in R2010b
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combvec
Create all combinations of vectors

Syntax

combvec(A1,A2,...)

Description

combvec(A1,A2,...) takes any number of inputs,

A1 Matrix of N1 (column) vectors
A2 Matrix of N2 (column) vectors

and returns a matrix of (N1*N2*...) column vectors, where the columns consist of all
possibilities of A2 vectors, appended to A1 vectors.

Examples
a1 = [1 2 3; 4 5 6];

a2 = [7 8; 9 10];

a3 = combvec(a1,a2)

a3 =

     1     2     3     1     2     3

     4     5     6     4     5     6

     7     7     7     8     8     8

     9     9     9    10    10    10

Introduced before R2006a
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compet
Competitive transfer function

Graph and Symbol

Syntax

A = compet(N,FP)

info = compet('code')

Description

compet is a neural transfer function. Transfer functions calculate a layer’s output from
its net input.

A = compet(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns the S-by-Q matrix A with a 1 in each column where the same column of N has
its maximum value, and 0 elsewhere.

info = compet('code') returns information according to the code string specified:

compet('name') returns the name of this function.
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compet('output',FP) returns the [min max] output range.

compet('active',FP) returns the [min max] active input range.

compet('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-
by-Q.

compet('fpnames') returns the names of the function parameters.

compet('fpdefaults') returns the default function parameters.

Examples

Here you define a net input vector N, calculate the output, and plot both with bar graphs.

n = [0; 1; -0.5; 0.5];

a = compet(n);

subplot(2,1,1), bar(n), ylabel('n')

subplot(2,1,2), bar(a), ylabel('a')

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'compet';

See Also
sim | softmax

Introduced before R2006a
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competlayer
Competitive layer

Syntax

competlayer(numClasses,kohonenLR,conscienceLR)

Description

Competitive layers learn to classify input vectors into a given number of classes,
according to similarity between vectors, with a preference for equal numbers of vectors
per class.

competlayer(numClasses,kohonenLR,conscienceLR) takes these arguments,

numClasses Number of classes to classify inputs (default = 5)
kohonenLR Learning rate for Kohonen weights (default = 0.01)
conscienceLR Learning rate for conscience bias (default = 0.001)

and returns a competitive layer with numClasses neurons.

Examples

Create and Train a Competitive Layer

Here a competitive layer is trained to classify 150 iris flowers into 6 classes.

inputs = iris_dataset;

net = competlayer(6);

net = train(net,inputs);

view(net)

outputs = net(inputs);

classes = vec2ind(outputs);

1-32



 competlayer

See Also
selforgmap | lvqnet | patternnet

Introduced in R2010b
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con2seq
Convert concurrent vectors to sequential vectors

Syntax

S = con2seq(b)

S = con2seq(b,TS)

Description

Neural Network Toolbox™ software arranges concurrent vectors with a matrix, and
sequential vectors with a cell array (where the second index is the time step).

con2seq and seq2con allow concurrent vectors to be converted to sequential vectors,
and back again.

S = con2seq(b) takes one input,

b R-by-TS matrix

and returns one output,

S 1-by-TS cell array of R-by-1 vectors

S = con2seq(b,TS) can also convert multiple batches,

b N-by-1 cell array of matrices with M*TS columns
TS Time steps

and returns

S N-by-TS cell array of matrices with M columns

Examples

Here a batch of three values is converted to a sequence.
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p1 = [1 4 2]

p2 = con2seq(p1)

Here, two batches of vectors are converted to two sequences with two time steps.

p1 = {[1 3 4 5; 1 1 7 4]; [7 3 4 4; 6 9 4 1]}

p2 = con2seq(p1,2)

See Also
seq2con | concur

Introduced before R2006a
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concur
Create concurrent bias vectors

Syntax

concur(B,Q)

Description

concur(B,Q)

B S-by-1 bias vector (or an Nl-by-1 cell array of vectors)
Q Concurrent size

and returns an S-by-B matrix of copies of B (or an Nl-by-1 cell array of matrices).

Examples

Here concur creates three copies of a bias vector.

b = [1; 3; 2; -1];

concur(b,3)

Network Use

To calculate a layer’s net input, the layer’s weighted inputs must be combined with its
biases. The following expression calculates the net input for a layer with the netsum net
input function, two input weights, and a bias:

n = netsum(z1,z2,b)

The above expression works if Z1, Z2, and B are all S-by-1 vectors. However, if the
network is being simulated by sim (or adapt or train) in response to Q concurrent
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vectors, then Z1 and Z2 will be S-by-Q matrices. Before B can be combined with Z1 and
Z2, you must make Q copies of it.

n = netsum(z1,z2,concur(b,q))

See Also
con2seq | netprod | netsum | seq2con | sim

Introduced before R2006a
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configure
Configure network inputs and outputs to best match input and target data

Syntax
net = configure(net,x,t)

net = configure(net,x)

net = configure(net,'inputs',x,i)

net = configure(net,'outputs',t,i)

Description
Configuration is the process of setting network input and output sizes and ranges, input
preprocessing settings and output postprocessing settings, and weight initialization
settings to match input and target data.

Configuration must happen before a network’s weights and biases can be initialized.
Unconfigured networks are automatically configured and initialized the first time
train is called. Alternately, a network can be configured manually either by calling this
function or by setting a network’s input and output sizes, ranges, processing settings, and
initialization settings properties manually.

net = configure(net,x,t) takes input data x and target data t, and configures the
network’s inputs and outputs to match.

net = configure(net,x) configures only inputs.

net = configure(net,'inputs',x,i) configures the inputs specified with the index
vector i. If i is not specified all inputs are configured.

net = configure(net,'outputs',t,i) configures the outputs specified with the
index vector i. If i is not specified all targets are configured.

Examples
Here a feedforward network is created and manually configured for a simple fitting
problem (as opposed to allowing train to configure it).
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[x,t] = simplefit_dataset;

net = feedforwardnet(20); view(net)

net = configure(net,x,t); view(net)

See Also
isconfigured | init | train | unconfigure

Introduced in R2010b
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confusion
Classification confusion matrix

Syntax

[c,cm,ind,per] = confusion(targets,outputs)

Description

[c,cm,ind,per] = confusion(targets,outputs) takes these values:

targets S-by-Q matrix, where each column vector contains a single 1 value,
with all other elements 0. The index of the 1 indicates which of S
categories that vector represents.

outputs S-by-Q matrix, where each column contains values in the range [0,1].
The index of the largest element in the column indicates which of S
categories that vector represents.

and returns these values:

c Confusion value = fraction of samples misclassified
cm S-by-S confusion matrix, where cm(i,j) is the number of samples

whose target is the ith class that was classified as j
ind S-by-S cell array, where ind{i,j} contains the indices of samples with

the ith target class, but jth output class
per S-by-4 matrix, where each row summarizes four percentages associated

with the ith class:
per(i,1) false negative rate

          = (false negatives)/(all output negatives)

per(i,2) false positive rate

          = (false positives)/(all output positives)

per(i,3) true positive rate

          = (true positives)/(all output positives)

per(i,4) true negative rate

          = (true negatives)/(all output negatives)

1-40



 confusion

[c,cm,ind,per] = confusion(TARGETS,OUTPUTS) takes these values:

targets 1-by-Q vector of 1/0 values representing membership
outputs S-by-Q matrix, of value in [0,1] interval, where values greater than or

equal to 0.5 indicate class membership

and returns these values:

c Confusion value = fraction of samples misclassified
cm 2-by-2 confusion matrix
ind 2-by-2 cell array, where ind{i,j} contains the indices of samples

whose target is 1 versus 0, and whose output was greater than or equal
to 0.5 versus less than 0.5

per 2-by-4 matrix where each ith row represents the percentage of false
negatives, false positives, true positives, and true negatives for the
class and out-of-class

Examples
[x,t] = simpleclass_dataset;

net = patternnet(10);

net = train(net,x,t);

y = net(x);

[c,cm,ind,per] = confusion(t,y)

See Also
plotconfusion | roc

Introduced in R2008a
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convwf
Convolution weight function

Syntax

Z = convwf(W,P)

dim = convwf('size',S,R,FP)

dw = convwf('dw',W,P,Z,FP)

info = convwf('code')

Description

Weight functions apply weights to an input to get weighted inputs.

Z = convwf(W,P) returns the convolution of a weight matrix W and an input P.

dim = convwf('size',S,R,FP) takes the layer dimension S, input dimension R, and
function parameters, and returns the weight size.

dw = convwf('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

info = convwf('code') returns information about this function. The following codes
are defined:

'deriv' Name of derivative function
'fullderiv' Reduced derivative = 2, full derivative = 1, linear derivative

= 0
'pfullderiv' Input: reduced derivative = 2, full derivative = 1, linear

derivative = 0
'wfullderiv' Weight: reduced derivative = 2, full derivative = 1, linear

derivative = 0
'name' Full name
'fpnames' Returns names of function parameters
'fpdefaults' Returns default function parameters
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Examples

Here you define a random weight matrix W and input vector P and calculate the
corresponding weighted input Z.

W = rand(4,1);

P = rand(8,1);

Z = convwf(W,P)

Network Use

To change a network so an input weight uses convwf, set
net.inputWeights{i,j}.weightFcn to 'convwf'. For a layer weight, set
net.layerWeights{i,j}.weightFcn to 'convwf'.

In either case, call sim to simulate the network with convwf.

Introduced in R2006a
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crossentropy
Neural network performance

Syntax

perf = crossentropy(net,targets,outputs,perfWeights)

perf = crossentropy( ___ ,Name,Value)

Description

perf = crossentropy(net,targets,outputs,perfWeights) calculates a
network performance given targets and outputs, with optional performance weights
and other parameters. The function returns a result that heavily penalizes outputs
that are extremely inaccurate (y near 1-t), with very little penalty for fairly correct
classifications (y near t). Minimizing cross-entropy leads to good classifiers.

The cross-entropy for each pair of output-target elements is calculated as: ce = -t .*
log(y).

The aggregate cross-entropy performance is the mean of the individual values: perf =
sum(ce(:))/numel(ce).

Special case (N = 1): If an output consists of only one element, then the outputs and
targets are interpreted as binary encoding. That is, there are two classes with targets
of 0 and 1, whereas in 1-of-N encoding, there are two or more classes. The binary cross-
entropy expression is: ce = -t .* log(y) - (1-t) .* log(1-y) .

perf = crossentropy( ___ ,Name,Value) supports customization according to the
specified name-value pair arguments.

Examples

Calculate Network Performance

This example shows how to design a classification network with cross-entropy and 0.1
regularization, then calculation performance on the whole dataset.
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[x,t] = iris_dataset;

net = patternnet(10);

net.performParam.regularization = 0.1;

net = train(net,x,t);

y = net(x);

perf = crossentropy(net,t,y,{1},'regularization',0.1)

perf =

    0.0267

Set crossentropy as Performance Function

This example shows how to set up the network to use the crossentropy during
training.

net = feedforwardnet(10);

net.performFcn = 'crossentropy';

net.performParam.regularization = 0.1;

net.performParam.normalization = 'none';

Input Arguments

net — neural network
network object

Neural network, specified as a network object.
Example: net = feedforwardnet(10);

targets — neural network target values
matrix or cell array of numeric values

Neural network target values, specified as a matrix or cell array of numeric values.
Network target values define the desired outputs, and can be specified as an N-by-Q
matrix of Q N-element vectors, or an M-by-TS cell array where each element is an Ni-
by-Q matrix.  In each of these cases, N or Ni indicates a vector length, Q the number of
samples, M the number of signals for neural networks with multiple outputs, and TS is
the number of time steps for time series data.  targets must have the same dimensions
as outputs.
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The target matrix columns consist of all zeros and a single 1 in the position of the class
being represented by that column vector. When N = 1, the software uses cross entropy
for binary encoding, otherwise it uses cross entropy for 1-of-N encoding. NaN values are
allowed to indicate unknown or don't-care output values.  The performance of NaN target
values is ignored.
Data Types: double | cell

outputs — neural network output values
matrix or cell array of numeric values

Neural network output values, specified as a matrix or cell array of numeric values.
Network output values can be specified as an N-by-Q matrix of Q N-element vectors, or an
M-by-TS cell array where each element is an Ni-by-Q matrix. In each of these cases, N or
Ni indicates a vector length, Q the number of samples, M the number of signals for neural
networks with multiple outputs and TS is the number of time steps for time series data.
outputs must have the same dimensions as targets.

Outputs can include NaN to indicate unknown output values, presumably produced
as a result of NaN input values (also representing unknown or don't-care values). The
performance of NaN output values is ignored.

General case (N>=2): The columns of the output matrix represent estimates of class
membership, and should sum to 1. You can use the softmax transfer function to produce
such output values. Use patternnet to create networks that are already set up to use
cross-entropy performance with a softmax output layer.
Data Types: double | cell

perfWeights — performance weights
{1} (default) | vector or cell array of numeric values

Performance weights, specified as a vector or cell array of numeric values. Performance
weights are an optional argument defining the importance of each performance value,
associated with each target value, using values between 0 and 1. Performance values
of 0 indicate targets to ignore, values of 1 indicate targets to be treated with normal
importance. Values between 0 and 1 allow targets to be treated with relative importance.

Performance weights have many uses. They are helpful for classification problems, to
indicate which classifications (or misclassifications) have relatively greater benefits (or
costs). They can be useful in time series problems where obtaining a correct output on
some time steps, such as the last time step, is more important than others. Performance
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weights can also be used to encourage a neural network to best fit samples whose targets
are known most accurately, while giving less importance to targets which are known to
be less accurate.

perfWeights can have the same dimensions as targets and outputs. Alternately,
each dimension of the performance weights can either match the dimension of targets
and outputs, or be 1. For instance, if targets is an N-by-Q matrix defining Q samples
of N-element vectors, the performance weights can be N-by-Q indicating a different
importance for each target value, or N-by-1 defining a different importance for each row
of the targets, or 1-by-Q indicating a different importance for each sample, or be the
scalar 1 (i.e. 1-by-1) indicating the same importance for all target values.

Similarly, if outputs and targets are cell arrays of matrices, the perfWeights can be
a cell array of the same size, a row cell array (indicating the relative importance of each
time step), a column cell array (indicating the relative importance of each neural network
output), or a cell array of a single matrix or just the matrix (both cases indicating that all
matrices have the same importance values).

For any problem, a perfWeights value of {1} (the default) or the scalar 1 indicates all
performances have equal importance.
Data Types: double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'normalization','standard' specifies the inputs and targets to be
normalized to the range (-1,+1).

'regularization' — proportion of performance attributed to weight/bias values
0 (default) | numeric value in the range (0,1)

Proportion of performance attributed to weight/bias values, specified as a double between
0 (the default) and 1. A larger value penalizes the network for large weights, and the
more likely the network function will avoid overfitting.
Example: 'regularization',0

Data Types: single | double
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'normalization' — Normalization mode for outputs, targets, and errors
'none' (default) | 'standard' | 'percent'

Normalization mode for outputs, targets, and errors, specified as 'none', 'standard',
or 'percent'. 'none' performs no normalization. 'standard' results in outputs and
targets being normalized to (-1, +1), and therefore errors in the range (-2, +2).'percent'
normalizes outputs and targets to (-0.5, 0.5) and errors to (-1, 1).
Example: 'normalization','standard'

Data Types: char

Output Arguments

perf — network performance
double

Network performance, returned as a double in the range (0,1).

See Also

See Also
mae | mse | patternnet | sae | softmax | sse

Introduced in R2013b
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defaultderiv

Default derivative function

Syntax

defaultderiv('dperf_dwb',net,X,T,Xi,Ai,EW)

defaultderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description

This function chooses the recommended derivative algorithm for the type of network
whose derivatives are being calculated. For static networks, defaultderiv calls
staticderiv; for dynamic networks it calls bttderiv to calculate the gradient and
fpderiv to calculate the Jacobian.

defaultderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an R-by-Q matrix (or N-by-TS cell array of Ri-by-Q matrices)
T Targets, an S-by-Q matrix (or M-by-TS cell array of Si-by-Q

matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and
biases, where R and S are the number of input and output elements and Q is the number
of samples (or N and M are the number of input and output signals, Ri and Si are the
number of each input and outputs elements, and TS is the number of timesteps).

defaultderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with
respect to the network’s weights and biases.
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Examples

Here a feedforward network is trained and both the gradient and Jacobian are
calculated.

[x,t] = simplefit_dataset;

net = feedforwardnet(10);

net = train(net,x,t);

y = net(x);

perf = perform(net,t,y);

dwb = defaultderiv('dperf_dwb',net,x,t)

See Also
bttderiv | fpderiv | num2deriv | num5deriv | staticderiv

Introduced in R2010b
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disp
Neural network properties

Syntax

disp(net)

To Get Help

Type help network/disp.

Description

disp(net) displays a network’s properties.

Examples

Here a perceptron is created and displayed.

net = newp([-1 1; 0 2],3);

disp(net)

See Also
display | sim | init | train | adapt

Introduced before R2006a
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display
Name and properties of neural network variables

Syntax

display(net)

To Get Help

Type help network/display.

Description

display(net) displays a network variable’s name and properties.

Examples

Here a perceptron variable is defined and displayed.

net = newp([-1 1; 0 2],3);

display(net)

display is automatically called as follows:

net

See Also
disp | sim | init | train | adapt

Introduced before R2006a
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dist
Euclidean distance weight function

Syntax

Z = dist(W,P,FP)

dim = dist('size',S,R,FP)

dw = dist('dw',W,P,Z,FP)

D = dist(pos)

info = dist('code')

Description

Weight functions apply weights to an input to get weighted inputs.

Z = dist(W,P,FP) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors
FP Struct of function parameters (optional, ignored)

and returns the S-by-Q matrix of vector distances.

dim = dist('size',S,R,FP) takes the layer dimension S, input dimension R, and
function parameters, and returns the weight size [S-by-R].

dw = dist('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

dist is also a layer distance function which can be used to find the distances between
neurons in a layer.

D = dist(pos) takes one argument,

pos N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.
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info = dist('code') returns information about this function. The following codes are
supported:

'deriv' Name of derivative function
'fullderiv' Full derivative = 1, linear derivative = 0
'pfullderiv' Input: reduced derivative = 2, full derivative = 1, linear

derivative = 0
'name' Full name
'fpnames' Returns names of function parameters
'fpdefaults' Returns default function parameters

Examples

Here you define a random weight matrix W and input vector P and calculate the
corresponding weighted input Z.

W = rand(4,3);

P = rand(3,1);

Z = dist(W,P)

Here you define a random matrix of positions for 10 neurons arranged in three-
dimensional space and find their distances.

pos = rand(3,10);

D = dist(pos)

Network Use

You can create a standard network that uses dist by calling newpnn or newgrnn.

To change a network so an input weight uses dist, set
net.inputWeights{i,j}.weightFcn to 'dist'. For a layer weight, set
net.layerWeights{i,j}.weightFcn to 'dist'.

To change a network so that a layer’s topology uses dist, set
net.layers{i}.distanceFcn to 'dist'.
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In either case, call sim to simulate the network with dist.

See newpnn or newgrnn for simulation examples.

Algorithms

The Euclidean distance d between two vectors X and Y is

d = sum((x-y).^2).^0.5

See Also
sim | dotprod | negdist | normprod | mandist | linkdist

Introduced before R2006a
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distdelaynet
Distributed delay network

Syntax

distdelaynet(delays,hiddenSizes,trainFcn)

Description

Distributed delay networks are similar to feedforward networks, except that each input
and layer weights has a tap delay line associated with it. This allows the network to have
a finite dynamic response to time series input data. This network is also similar to the
time delay neural network (timedelaynet), which only has delays on the input weight.

distdelaynet(delays,hiddenSizes,trainFcn) takes these arguments,

delays Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns a distributed delay neural network.

Examples

Distributed Delay Network

Here a distributed delay neural network is used to solve a simple time series problem.

[X,T] = simpleseries_dataset;

net = distdelaynet({1:2,1:2},10);

[Xs,Xi,Ai,Ts] = preparets(net,X,T);

net = train(net,Xs,Ts,Xi,Ai);

view(net)

Y = net(Xs,Xi,Ai);
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perf = perform(net,Y,Ts)

perf =

    0.0323

See Also
preparets | removedelay | timedelaynet | narnet | narxnet

Introduced in R2010b
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divideblock
Divide targets into three sets using blocks of indices

Syntax

[trainInd,valInd,testInd] =

divideblock(Q,trainRatio,valRatio,testRatio)

Description

[trainInd,valInd,testInd] =

divideblock(Q,trainRatio,valRatio,testRatio) separates targets into three
sets: training, validation, and testing. It takes the following inputs:

Q Number of targets to divide up.
trainRatio Ratio of targets for training. Default = 0.7.
valRatio Ratio of targets for validation. Default = 0.15.
testRatio Ratio of targets for testing. Default = 0.15.

and returns

trainInd Training indices
valInd Validation indices
testInd Test indices

Examples
[trainInd,valInd,testInd] = divideblock(3000,0.6,0.2,0.2);

Network Use

Here are the network properties that define which data division function to use, what its
parameters are, and what aspects of targets are divided up, when train is called.
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net.divideFcn

net.divideParam

net.divideMode

See Also
divideind | divideint | dividerand | dividetrain

Introduced in R2008a
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divideind
Divide targets into three sets using specified indices

Syntax

[trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,testInd)

Description

[trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,testInd)

separates targets into three sets: training, validation, and testing, according to indices
provided. It actually returns the same indices it receives as arguments; its purpose is to
allow the indices to be used for training, validation, and testing for a network to be set
manually.

It takes the following inputs,

Q Number of targets to divide up
trainInd Training indices
valInd Validation indices
testInd Test indices

and returns

trainInd Training indices (unchanged)
valInd Validation indices (unchanged)
testInd Test indices (unchanged)

Examples
[trainInd,valInd,testInd] = ...

divideind(3000,1:2000,2001:2500,2501:3000);
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Network Use

Here are the network properties that define which data division function to use, what its
parameters are, and what aspects of targets are divided up, when train is called.

net.divideFcn

net.divideParam

net.divideMode

See Also
divideblock | divideint | dividerand | dividetrain

Introduced in R2008a
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divideint
Divide targets into three sets using interleaved indices

Syntax

[trainInd,valInd,testInd] =

divideint(Q,trainRatio,valRatio,testRatio)

Description

[trainInd,valInd,testInd] =

divideint(Q,trainRatio,valRatio,testRatio) separates targets into three sets:
training, validation, and testing. It takes the following inputs,

Q Number of targets to divide up.
trainRatio Ratio of vectors for training. Default = 0.7.
valRatio Ratio of vectors for validation. Default = 0.15.
testRatio Ratio of vectors for testing. Default = 0.15.

and returns

trainInd Training indices
valInd Validation indices
testInd Test indices

Examples
[trainInd,valInd,testInd] = divideint(3000,0.6,0.2,0.2);

Network Use

Here are the network properties that define which data division function to use, what its
parameters are, and what aspects of targets are divided up, when train is called.
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net.divideFcn

net.divideParam

net.divideMode

See Also
divideblock | divideind | dividerand | dividetrain

Introduced in R2008a
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dividerand
Divide targets into three sets using random indices

Syntax

[trainInd,valInd,testInd] =

dividerand(Q,trainRatio,valRatio,testRatio)

Description

[trainInd,valInd,testInd] =

dividerand(Q,trainRatio,valRatio,testRatio) separates targets into three sets:
training, validation, and testing. It takes the following inputs,

Q Number of targets to divide up.
trainRatio Ratio of vectors for training. Default = 0.7.
valRatio Ratio of vectors for validation. Default = 0.15.
testRatio Ratio of vectors for testing. Default = 0.15.

and returns

trainInd Training indices
valInd Validation indices
testInd Test indices

Examples
[trainInd,valInd,testInd] = dividerand(3000,0.6,0.2,0.2);

Network Use

Here are the network properties that define which data division function to use, what its
parameters are, and what aspects of targets are divided up, when train is called.
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net.divideFcn

net.divideParam

net.divideMode

See Also
divideblock | divideind | divideint | dividetrain

Introduced in R2008a

1-65



1 Functions — Alphabetical List

dividetrain
Assign all targets to training set

Syntax

[trainInd,valInd,testInd] =

dividetrain(Q,trainRatio,valRatio,testRatio)

Description

[trainInd,valInd,testInd] =

dividetrain(Q,trainRatio,valRatio,testRatio) assigns all targets to the
training set and no targets to either the validation or test sets. It takes the following
inputs,

Q Number of targets to divide up.

and returns

trainInd Training indices equal to 1:Q
valInd Empty validation indices, []
testInd Empty test indices, []

Examples
[trainInd,valInd,testInd] = dividetrain(3000);

Network Use

Here are the network properties that define which data division function to use, what its
parameters are, and what aspects of targets are divided up, when train is called.

net.divideFcn
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net.divideParam

net.divideMode

See Also
divideblock | divideind | divideint | dividerand

Introduced in R2010b
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dotprod
Dot product weight function

Syntax

Z = dotprod(W,P,FP)

dim = dotprod('size',S,R,FP)

dw = dotprod('dw',W,P,Z,FP)

info = dotprod('code')

Description

Weight functions apply weights to an input to get weighted inputs.

Z = dotprod(W,P,FP) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors
FP Struct of function parameters (optional, ignored)

and returns the S-by-Q dot product of W and P.

dim = dotprod('size',S,R,FP) takes the layer dimension S, input dimension R, and
function parameters, and returns the weight size [S-by-R].

dw = dotprod('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

info = dotprod('code') returns information about this function. The following codes
are defined:

'deriv' Name of derivative function
'pfullderiv' Input: reduced derivative = 2, full derivative = 1, linear

derivative = 0
'wfullderiv' Weight: reduced derivative = 2, full derivative = 1, linear

derivative = 0
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'name' Full name
'fpnames' Returns names of function parameters
'fpdefaults' Returns default function parameters

Examples

Here you define a random weight matrix W and input vector P and calculate the
corresponding weighted input Z.

W = rand(4,3);

P = rand(3,1);

Z = dotprod(W,P)

Network Use

You can create a standard network that uses dotprod by calling feedforwardnet.

To change a network so an input weight uses dotprod, set
net.inputWeights{i,j}.weightFcn to 'dotprod'. For a layer weight, set
net.layerWeights{i,j}.weightFcn to 'dotprod'.

In either case, call sim to simulate the network with dotprod.

See Also
sim | dist | feedforwardnet | negdist | normprod

Introduced before R2006a
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elliotsig
Elliot symmetric sigmoid transfer function

Syntax

A = elliotsig(N)

Description

Transfer functions convert a neural network layer’s net input into its net output.

A = elliotsig(N) takes an S-by-Q matrix of S N-element net input column vectors and
returns an S-by-Q matrix A of output vectors, where each element of N is squashed from
the interval [-inf inf] to the interval [-1 1] with an “S-shaped” function.

The advantage of this transfer function over other sigmoids is that it is fast to calculate
on simple computing hardware as it does not require any exponential or trigonometric
functions. Its disadvantage is that it only flattens out for large inputs, so its effect is
not as local as other sigmoid functions. This might result in more training iterations, or
require more neurons to achieve the same accuracy.

Examples

Calculate a layer output from a single net input vector:

n = [0; 1; -0.5; 0.5];

a = elliotsig(n);

Plot the transfer function:

n = -5:0.01:5;

plot(n, elliotsig(n))

set(gca,'dataaspectratio',[1 1 1],'xgrid','on','ygrid','on')

For a network you have already defined, change the transfer function for layer i:

 net.layers{i}.transferFcn = 'elliotsig';
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See Also
elliot2sig | logsig | tansig

Introduced in R2012b
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elliot2sig
Elliot 2 symmetric sigmoid transfer function

Syntax

A = elliot2sig(N)

Description

Transfer functions convert a neural network layer’s net input into its net output. This
function is a variation on the original Elliot sigmoid function. It has a steeper slope,
closer to tansig, but is not as smooth at the center.

A = elliot2sig(N) takes an S-by-Q matrix of S N-element net input column vectors
and returns an S-by-Q matrix A of output vectors, where each element of N is squashed
from the interval [-inf inf] to the interval [-1 1] with an “S-shaped” function.

The advantage of this transfer function over other sigmoids is that it is fast to calculate
on simple computing hardware as it does not require any exponential or trigonometric
functions. Its disadvantage is that it departs from the classic sigmoid shape around zero.

Examples

Calculate a layer output from a single net input vector:

n = [0; 1; -0.5; 0.5];

a = elliot2sig(n);

Plot the transfer function:

n = -5:0.01:5;

plot(n, elliot2sig(n))

set(gca,'dataaspectratio',[1 1 1],'xgrid','on','ygrid','on')

For a network you have already defined, change the transfer function for layer i:

 net.layers{i}.transferFcn = 'elliot2sig';
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See Also
elliotsig | logsig | tansig

Introduced in R2012b
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elmannet
Elman neural network

Syntax

elmannet(layerdelays,hiddenSizes,trainFcn)

Description

Elman networks are feedforward networks (feedforwardnet) with the addition of layer
recurrent connections with tap delays.

With the availability of full dynamic derivative calculations (fpderiv and bttderiv),
the Elman network is no longer recommended except for historical and research
purposes. For more accurate learning try time delay (timedelaynet), layer recurrent
(layrecnet), NARX (narxnet), and NAR (narnet) neural networks.

Elman networks with one or more hidden layers can learn any dynamic input-output
relationship arbitrarily well, given enough neurons in the hidden layers. However,
Elman networks use simplified derivative calculations (using staticderiv, which
ignores delayed connections) at the expense of less reliable learning.

elmannet(layerdelays,hiddenSizes,trainFcn) takes these arguments,

layerdelays Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns an Elman neural network.

Examples

Here an Elman neural network is used to solve a simple time series problem.

[X,T] = simpleseries_dataset;
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net = elmannet(1:2,10);

[Xs,Xi,Ai,Ts] = preparets(net,X,T);

net = train(net,Xs,Ts,Xi,Ai);

view(net)

Y = net(Xs,Xi,Ai);

perf = perform(net,Ts,Y)

See Also
preparets | removedelay | timedelaynet | layrecnet | narnet | narxnet

Introduced in R2010b
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errsurf
Error surface of single-input neuron

Syntax

errsurf(P,T,WV,BV,F)

Description

errsurf(P,T,WV,BV,F) takes these arguments,

P 1-by-Q matrix of input vectors
T 1-by-Q matrix of target vectors
WV Row vector of values of W
BV Row vector of values of B
F Transfer function (string)

and returns a matrix of error values over WV and BV.

Examples
p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 +6.1];

t = [+0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];

wv = -1:.1:1; bv = -2.5:.25:2.5;

es = errsurf(p,t,wv,bv,'logsig');

plotes(wv,bv,es,[60 30])

See Also
plotes

Introduced before R2006a
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extendts
Extend time series data to given number of timesteps

Syntax

extendts(x,ts,v)

Description

extendts(x,ts,v) takes these values,

x Neural network time series data
ts Number of timesteps
v Value

and returns the time series data either extended or truncated to match the specified
number of timesteps. If the value v is specified, then extended series are filled in with
that value, otherwise they are extended with random values.

Examples

Here, a 20-timestep series is created and then extended to 25 timesteps with the value
zero.

x = nndata(5,4,20);

y = extendts(x,25,0)

See Also
nndata | catsamples | preparets

Introduced in R2010b

1-77



1 Functions — Alphabetical List

feedforwardnet
Feedforward neural network

Syntax

feedforwardnet(hiddenSizes,trainFcn)

Description

Feedforward networks consist of a series of layers. The first layer has a connection from
the network input. Each subsequent layer has a connection from the previous layer. The
final layer produces the network’s output.

Feedforward networks can be used for any kind of input to output mapping. A
feedforward network with one hidden layer and enough neurons in the hidden layers, can
fit any finite input-output mapping problem.

Specialized versions of the feedforward network include fitting (fitnet) and pattern
recognition (patternnet) networks. A variation on the feedforward network is the
cascade forward network (cascadeforwardnet) which has additional connections from
the input to every layer, and from each layer to all following layers.

feedforwardnet(hiddenSizes,trainFcn) takes these arguments,

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns a feedforward neural network.

Examples

Feedforward Neural Network

This example shows how to use feedforward neural network to solve a simple problem.
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[x,t] = simplefit_dataset;

net = feedforwardnet(10);

net = train(net,x,t);

view(net)

y = net(x);

perf = perform(net,y,t)

perf =

   1.4639e-04

See Also

See Also
cascadeforwardnet | fitnet | network | patternnet

Topics
“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced in R2010b
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fixunknowns
Process data by marking rows with unknown values

Syntax

[y,ps] = fixunknowns(X)

[y,ps] = fixunknowns(X,FP)

Y = fixunknowns('apply',X,PS)

X = fixunknowns('reverse',Y,PS)

name = fixunknowns('name')

fp = fixunknowns('pdefaults')

pd = fixunknowns('pdesc')

fixunknowns('pcheck',fp)

Description

fixunknowns processes matrices by replacing each row containing unknown values
(represented by NaN) with two rows of information.

The first row contains the original row, with NaN values replaced by the row’s mean. The
second row contains 1 and 0 values, indicating which values in the first row were known
or unknown, respectively.

[y,ps] = fixunknowns(X) takes these inputs,

X N-by-Q matrix

and returns

Y M-by-Q matrix with M - N rows added
PS Process settings that allow consistent processing of values

[y,ps] = fixunknowns(X,FP) takes an empty struct FP of parameters.

Y = fixunknowns('apply',X,PS) returns Y, given X and settings PS.
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X = fixunknowns('reverse',Y,PS) returns X, given Y and settings PS.

name = fixunknowns('name') returns the name of this process method.

fp = fixunknowns('pdefaults') returns the default process parameter structure.

pd = fixunknowns('pdesc') returns the process parameter descriptions.

fixunknowns('pcheck',fp) throws an error if any parameter is illegal.

Examples

Here is how to format a matrix with a mixture of known and unknown values in its
second row:

x1 = [1 2 3 4; 4 NaN 6 5; NaN 2 3 NaN]

[y1,ps] = fixunknowns(x1)

Next, apply the same processing settings to new values:

x2 = [4 5 3 2; NaN 9 NaN 2; 4 9 5 2]

y2 = fixunknowns('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = fixunknowns('reverse',y1,ps)

Definitions

Recode Data with NaNs Using fixunknowns

If you have input data with unknown values, you can represent them with NaN values.
For example, here are five 2-element vectors with unknown values in the first element of
two of the vectors:

p1 = [1 NaN 3 2 NaN; 3 1 -1 2 4];

The network will not be able to process the NaN values properly. Use the function
fixunknowns to transform each row with NaN values (in this case only the first row) into
two rows that encode that same information numerically.
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[p2,ps] = fixunknowns(p1);

Here is how the first row of values was recoded as two rows.

p2 =

   1  2  3  2  2

   1  0  1  1  0

   3  1 -1  2  4

The first new row is the original first row, but with the mean value for that row (in this
case 2) replacing all NaN values. The elements of the second new row are now either 1,
indicating the original element was a known value, or 0 indicating that it was unknown.
The original second row is now the new third row. In this way both known and unknown
values are encoded numerically in a way that lets the network be trained and simulated.

Whenever supplying new data to the network, you should transform the inputs in
the same way, using the settings ps returned by fixunknowns when it was used to
transform the training input data.

p2new = fixunknowns('apply',p1new,ps);

The function fixunkowns is only recommended for input processing. Unknown targets
represented by NaN values can be handled directly by the toolbox learning algorithms.
For instance, performance functions used by backpropagation algorithms recognize NaN
values as unknown or unimportant values.

See Also
mapminmax | mapstd | processpca

Introduced in R2006a
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formwb
Form bias and weights into single vector

Syntax

formwb(net,b,IW,LW)

Description

formwb(net,b,IW,LW) takes a neural network and bias b, input weight IW, and layer
weight LW values, and combines the values into a single vector.

Examples

Here a network is created, configured, and its weights and biases formed into a vector.

[x,t] = simplefit_dataset;

net = feedforwardnet(10);

net = configure(net,x,t);

wb = formwb(net,net.b,net.IW,net.LW)

See Also
getwb | setwb | separatewb

Introduced in R2010b
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fpderiv
Forward propagation derivative function

Syntax
fpderiv('dperf_dwb',net,X,T,Xi,Ai,EW)

fpderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function calculates derivatives using the chain rule from inputs to outputs, and in
the case of dynamic networks, forward through time.

fpderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an R-by-Q matrix (or N-by-TS cell array of Ri-by-Q matrices)
T Targets, an S-by-Q matrix (or M-by-TS cell array of Si-by-Q

matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and
biases, where R and S are the number of input and output elements and Q is the number
of samples (or N and M are the number of input and output signals, Ri and Si are the
number of each input and outputs elements, and TS is the number of timesteps).

fpderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect
to the network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are
calculated.
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[x,t] = simplefit_dataset;

net = feedforwardnet(20);

net = train(net,x,t);

y = net(x);

perf = perform(net,t,y);

gwb = fpderiv('dperf_dwb',net,x,t)

jwb = fpderiv('de_dwb',net,x,t)

See Also
bttderiv | defaultderiv | num2deriv | num5deriv | staticderiv

Introduced in R2010b
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fromnndata
Convert data from standard neural network cell array form

Syntax

fromnndata(x,toMatrix,columnSample,cellTime)

Description

fromnndata(x,toMatrix,columnSample,cellTime) takes these arguments,

net Neural network
toMatrix True if result is to be in matrix form
columnSample True if samples are to be represented as columns, false if rows
cellTime True if time series are to be represented as a cell array, false if

represented with a matrix

and returns the original data reformatted accordingly.

Examples

Here time-series data is converted from a matrix representation to standard cell array
representation, and back. The original data consists of a 5-by-6 matrix representing one
time-series sample consisting of a 5-element vector over 6 timesteps arranged in a matrix
with the samples as columns.

x = rands(5,6)

columnSamples = true; % samples are by columns.

cellTime = false;     % time-steps in matrix, not cell array.

[y,wasMatrix] = tonndata(x,columnSamples,cellTime)

x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)

Here data is defined in standard neural network data cell form. Converting this data
does not change it. The data consists of three time series samples of 2-element signals
over 3 timesteps.
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x = {rands(2,3);rands(2,3);rands(2,3)}

columnSamples = true;

cellTime = true;

[y,wasMatrix] = tonndata(x)

x2 = fromnndata(y,wasMatrix,columnSamples)

See Also
tonndata

Introduced in R2010b
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gadd
Generalized addition

Syntax

gadd(a,b)

Description

gadd(a,b) takes two matrices or cell arrays, and adds them in an element-wise manner.

Examples

Add Matrix and Cell Array Values

This example shows how to add matrix and cell array values.

gadd([1 2 3; 4 5 6],[10;20])

ans =

    11    12    13

    24    25    26

gadd({1 2; 3 4},{1 3; 5 2})

ans =

  2×2 cell array

    [2]    [5]

    [8]    [6]

1-88



 gadd

gadd({1 2 3 4},{10;20;30})

ans =

  3×4 cell array

    [11]    [12]    [13]    [14]

    [21]    [22]    [23]    [24]

    [31]    [32]    [33]    [34]

See Also
gsubtract | gdivide | gnegate | gsqrt | gmultiply

Introduced in R2010b
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gdivide
Generalized division

Syntax

gdivide(a,b)

Description

gdivide(a,b) takes two matrices or cell arrays, and divides them in an element-wise
manner.

Examples

Divide Matrix and Cell Array Values

This example shows how to divide matrix and cell array values.

gdivide([1 2 3; 4 5 6],[10;20])

ans =

    0.1000    0.2000    0.3000

    0.2000    0.2500    0.3000

gdivide({1 2; 3 4},{1 3; 5 2})

ans =

  2×2 cell array

    [     1]    [0.6667]

    [0.6000]    [     2]
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gdivide({1 2 3 4},{10;20;30})

ans =

  3×4 cell array

    [0.1000]    [0.2000]    [0.3000]    [0.4000]

    [0.0500]    [0.1000]    [0.1500]    [0.2000]

    [0.0333]    [0.0667]    [0.1000]    [0.1333]

See Also
gadd | gsubtract | gnegate | gsqrt | gmultiply

Introduced in R2010b
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gensim
Generate Simulink block for neural network simulation

Syntax

gensim(net,st)

To Get Help

Type help network/gensim.

Description

gensim(net,st) creates a Simulink® system containing a block that simulates neural
network net.

gensim(net,st) takes these inputs:

net Neural network
st Sample time (default = 1)

and creates a Simulink system containing a block that simulates neural network net
with a sampling time of st.

If net has no input or layer delays (net.numInputDelays and net.numLayerDelays
are both 0), you can use –1 for st to get a network that samples continuously.

Examples
[x,t] = simplefit_dataset;

net = feedforwardnet(10);

net = train(net,x,t)

gensim(net)
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Introduced before R2006a
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genFunction
Generate MATLAB function for simulating neural network

Syntax

genFunction(net,pathname)

genFunction( ___ ,'MatrixOnly','yes')

genFunction( ___ ,'ShowLinks','no')

Description

genFunction(net,pathname) generates a complete stand-alone MATLAB® function
for simulating a neural network including all settings, weight and bias values, module
functions, and calculations in one file. The result is a standalone MATLAB function file.
You can also use this function with MATLAB Compiler™ and MATLAB Coder™ tools.

genFunction( ___ ,'MatrixOnly','yes') overrides the default cell/matrix notation
and instead generates a function that uses only matrix arguments compatible with
MATLAB Coder tools. For static networks, the matrix columns are interpreted as
independent samples. For dynamic networks, the matrix columns are interpreted as a
series of time steps. The default value is 'no'.

genFunction( ___ ,'ShowLinks','no') disables the default behavior of displaying
links to generated help and source code. The default is 'yes'.

Examples

Create Functions from Static Neural Network

This example shows how to create a MATLAB function and a MEX-function from a static
neural network.

First, train a static network and calculate its outputs for the training data.

[x,t] = bodyfat_dataset;

bodyfatNet = feedforwardnet(10);

bodyfatNet = train(bodyfatNet,x,t);

1-94



 genFunction

y = bodyfatNet(x);

Next, generate and test a MATLAB function. Then the new function is compiled to a
shared/dynamically linked library with mcc.

genFunction(bodyfatNet,'bodyfatFcn');

y2 = bodyfatFcn(x);

accuracy2 = max(abs(y-y2))

mcc -W lib:libBodyfat -T link:lib bodyfatFcn

Next, generate another version of the MATLAB function that supports only matrix
arguments (no cell arrays), and test the function. Use the MATLAB Coder tool codegen
to generate a MEX-function, which is also tested.
genFunction(bodyfatNet,'bodyfatFcn','MatrixOnly','yes');

y3 = bodyfatFcn(x);

accuracy3 = max(abs(y-y3))

 

x1Type = coder.typeof(double(0),[13 Inf]); % Coder type of input 1

codegen bodyfatFcn.m -config:mex -o bodyfatCodeGen -args {x1Type}

y4 = bodyfatodeGen(x);

accuracy4 = max(abs(y-y4))

Create Functions from Dynamic Neural Network

This example shows how to create a MATLAB function and a MEX-function from a
dynamic neural network.

First, train a dynamic network and calculate its outputs for the training data.

[x,t] = maglev_dataset;

maglevNet = narxnet(1:2,1:2,10);

[X,Xi,Ai,T] = preparets(maglevNet,x,{},t);

maglevNet = train(maglevNet,X,T,Xi,Ai);

[y,xf,af] = maglevNet(X,Xi,Ai);

Next, generate and test a MATLAB function. Use the function to create a shared/
dynamically linked library with mcc.

genFunction(maglevNet,'maglevFcn');

[y2,xf,af] = maglevFcn(X,Xi,Ai);

accuracy2 = max(abs(cell2mat(y)-cell2mat(y2)))

mcc -W lib:libMaglev -T link:lib maglevFcn

Next, generate another version of the MATLAB function that supports only matrix
arguments (no cell arrays), and test the function. Use the MATLAB Coder tool codegen
to generate a MEX-function, which is also tested.
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genFunction(maglevNet,'maglevFcn','MatrixOnly','yes');

x1 = cell2mat(X(1,:)); % Convert each input to matrix

x2 = cell2mat(X(2,:));

xi1 = cell2mat(Xi(1,:)); % Convert each input state to matrix

xi2 = cell2mat(Xi(2,:));

[y3,xf1,xf2] = maglevFcn(x1,x2,xi1,xi2);

accuracy3 = max(abs(cell2mat(y)-y3))

 

x1Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 1

x2Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 2

xi1Type = coder.typeof(double(0),[1 2]); % Coder type of input 1 states

xi2Type = coder.typeof(double(0),[1 2]); % Coder type of input 2 states

codegen maglevFcn.m -config:mex -o maglevNetCodeGen -args {x1Type x2Type xi1Type xi2Type}

[y4,xf1,xf2] = maglevNetCodeGen(x1,x2,xi1,xi2);

dynamic_codegen_accuracy = max(abs(cell2mat(y)-y4))

Input Arguments

net — neural network
network object

Neural network, specified as a network object.
Example: net = feedforwardnet(10);

pathname — location and name of generated function file
(default) | character string

Location and name of generated function file, specified as a character string. If you do not
specify a file name extension of .m, it is automatically appended. If you do not specify a
path to the file, the default location is the current working folder.
Example: 'myFcn.m'

Data Types: char

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• You can use genFunction in the Neural Network Toolbox to generate a standalone
MATLAB function for a trained neural network. You can generate C/C++ code from
this standalone MATLAB function. To generate Simulink blocks, use the genSim
function. See “Deploy Trained Neural Network Functions”.

See Also

See Also
gensim

Topics
“Deploy Trained Neural Network Functions”

Introduced in R2013b
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getelements
Get neural network data elements

Syntax

getelements(x,ind)

Description

getelements(x,ind) returns the elements of neural network data x indicated by the
indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind rows of x.

If x is a cell array, the result is a cell array with as many columns as x, whose elements
(1,i) are matrices containing the ind rows of [x{:,i}].

Examples

This code gets elements 1 and 3 from matrix data:

x = [1 2 3; 4 7 4]

y = getelements(x,[1 3])

This code gets elements 1 and 3 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

y = getelements(x,[1 3])

See Also
nndata | numelements | setelements | catelements | getsamples |
gettimesteps | getsignals

Introduced in R2010b

1-98



 getsamples

getsamples
Get neural network data samples

Syntax

getsamples(x,ind)

Description

getsamples(x,ind) returns the samples of neural network data x indicated by the
indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind columns of x.

If x is a cell array, the result is a cell array the same size as x, whose elements are the
ind columns of the matrices in x.

Examples

This code gets samples 1 and 3 from matrix data:

x = [1 2 3; 4 7 4]

y = getsamples(x,[1 3])

This code gets elements 1 and 3 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

y = getsamples(x,[1 3])

See Also
nndata | numsamples | setsamples | catsamples | getelements | gettimesteps
| getsignals

Introduced in R2010b
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getsignals
Get neural network data signals

Syntax

getsignals(x,ind)

Description

getsignals(x,ind) returns the signals of neural network data x indicated by the
indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, ind may only be 1, which will return x, or [] which will return an empty
matrix.

If x is a cell array, the result is the ind rows of x.

Examples

This code gets signal 2 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

y = getsignals(x,2)

See Also
nndata | numsignals | setsignals | catsignals | getelements | getsamples |
gettimesteps

Introduced in R2010b
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getsiminit
Get Simulink neural network block initial input and layer delays states

Syntax

[xi,ai] = getsiminit(sysName,netName,net)

Description

[xi,ai] = getsiminit(sysName,netName,net) takes these arguments,

sysName The name of the Simulink system containing the neural
network block

netName The name of the Simulink neural network block
net The original neural network

and returns,

xi Initial input delay states
ai Initial layer delay states

Examples

Here a NARX network is designed. The NARX network has a standard input and an
open-loop feedback output to an associated feedback input.

[x,t] = simplenarx_dataset;

     net = narxnet(1:2,1:2,20);

     view(net)

     [xs,xi,ai,ts] = preparets(net,x,{},t);

     net = train(net,xs,ts,xi,ai);

     y = net(xs,xi,ai);

Now the network is converted to closed-loop, and the data is reformatted to simulate the
network’s closed-loop response.
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net = closeloop(net);

view(net)

[xs,xi,ai,ts] = preparets(net,x,{},t);

y = net(xs,xi,ai);

Here the network is converted to a Simulink system with workspace input and output
ports. Its delay states are initialized, inputs X1 defined in the workspace, and it is ready
to be simulated in Simulink.

[sysName,netName] = gensim(net,'InputMode','Workspace',...

 'OutputMode','WorkSpace','SolverMode','Discrete');

setsiminit(sysName,netName,net,xi,ai,1);

x1 = nndata2sim(x,1,1);

Finally the initial input and layer delays are obtained from the Simulink model. (They
will be identical to the values set with setsiminit.)

[xi,ai] = getsiminit(sysName,netName,net);

See Also
gensim | setsiminit | nndata2sim | sim2nndata

Introduced in R2010b
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gettimesteps
Get neural network data timesteps

Syntax

gettimesteps(x,ind)

Description

gettimesteps(x,ind) returns the timesteps of neural network data x indicated by the
indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, ind can only be 1, which will return x; or [], which will return an empty
matrix.

If x is a cell array the result is the ind columns of x.

Examples

This code gets timestep 2 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

y = gettimesteps(x,2)

See Also
nndata | numtimesteps | settimesteps | cattimesteps | getelements |
getsamples | getsignals

Introduced in R2010b
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getwb
Get network weight and bias values as single vector

Syntax

getwb(net)

Description

getwb(net) returns a neural network’s weight and bias values as a single vector.

Examples

Here a feedforward network is trained to fit some data, then its bias and weight values
are formed into a vector.

[x,t] = simplefit_dataset;

net = feedforwardnet(20);

net = train(net,x,t);

wb = getwb(net)

See Also
setwb | formwb | separatewb

Introduced in R2010b
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gmultiply
Generalized multiplication

Syntax

gmultiply(a,b)

Description

gmultiply(a,b) takes two matrices or cell arrays, and multiplies them in an element-
wise manner.

Examples

Multiply Matrix and Cell Array Values

This example shows how to multiply matrix and cell array values.

gmultiply([1 2 3; 4 5 6],[10;20])

ans =

    10    20    30

    80   100   120

gmultiply({1 2; 3 4},{1 3; 5 2})

ans =

  2×2 cell array

    [ 1]    [6]

    [15]    [8]
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gmultiply({1 2 3 4},{10;20;30})

ans =

  3×4 cell array

    [10]    [20]    [30]    [ 40]

    [20]    [40]    [60]    [ 80]

    [30]    [60]    [90]    [120]

See Also
gadd | gsubtract | gdivide | gnegate | gsqrt

Introduced in R2010b
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gnegate
Generalized negation

Syntax
gnegate(x)

Description
gnegate(x) takes a matrix or cell array of matrices, and negates their element values.

Examples

Negate a Cell Array

This example shows how to negate a cell array:

x = {[1 2; 3 4],[1 -3; -5 2]};

y = gnegate(x);

y{1}, y{2}

ans =

    -1    -2

    -3    -4

ans =

    -1     3

     5    -2

See Also
gadd | gsubtract | gsqrt | gdivide | gmultiply
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Introduced in R2010b
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gpu2nndata
Reformat neural data back from GPU

Syntax

X = gpu2nndata(Y,Q)

X = gpu2nndata(Y)

X = gpu2nndata(Y,Q,N,TS)

Description

Training and simulation of neural networks require that matrices be transposed. But
they do not require (although they are more efficient with) padding of column length so
that each column is memory aligned. This function copies data back from the current
GPU and reverses this transform. It can be used on data formatted with nndata2gpu or
on the results of network simulation.

X = gpu2nndata(Y,Q) copies the QQ-by-N gpuArray Y into RAM, takes the first Q rows
and transposes the result to get an N-by-Q matrix representing Q N-element vectors.

X = gpu2nndata(Y) calculates Q as the index of the last row in Y that is not all NaN
values (those rows were added to pad Y for efficient GPU computation by nndata2gpu). Y
is then transformed as before.

X = gpu2nndata(Y,Q,N,TS) takes a QQ-by-(N*TS) gpuArray where N is a vector of
signal sizes, Q is the number of samples (less than or equal to the number of rows after
alignment padding QQ), and TS is the number of time steps.

The gpuArray Y is copied back into RAM, the first Q rows are taken, and then it is
partitioned and transposed into an M-by-TS cell array, where M is the number of elements
in N. Each Y{i,ts} is an N(i)-by-Q matrix.

Examples

Copy a matrix to the GPU and back:
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x = rand(5,6)

[y,q] = nndata2gpu(x)

x2 = gpu2nndata(y,q)

Copy from the GPU a neural network cell array data representing four time series, each
consisting of five time steps of 2-element and 3-element signals.

x = nndata([2;3],4,5)

[y,q,n,ts] = nndata2gpu(x)

x2 = gpu2nndata(y,q,n,ts)

See Also
nndata2gpu

Introduced in R2012b
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gridtop

Grid layer topology function

Syntax

gridtop(dimensions)

Description

pos = gridtop calculates neuron positions for layers whose neurons are arranged in an
N-dimensional grid.

gridtop(dimensions) takes one argument:

dimensions Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors where N is the number of
dimensions and S is the product of dimensions.

Examples

Display Layer with Grid Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in
an 8-by-5 grid pattern.

pos = gridtop([8 5]);

plotsom(pos)
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See Also
hextop | randtop | tritop

Introduced before R2006a
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gsqrt
Generalized square root

Syntax

gsqrt(x)

Description

gsqrt(x) takes a matrix or cell array of matrices, and generates the element-wise
square root of the matrices.

Examples

Compute Element-Wise Square Root

This example shows how to get the element-wise square root of a cell array:

gsqrt({1 2; 3 4})

ans =

  2×2 cell array

    [     1]    [1.4142]

    [1.7321]    [     2]

See Also
gadd | gsubtract | gnegate | gdivide | gmultiply

Introduced in R2010b
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gsubtract
Generalized subtraction

Syntax

gsubtract(a,b)

Description

gsubtract(a,b) takes two matrices or cell arrays, and subtracts them in an element-
wise manner.

Examples

Subtract Matrix and Cell Array Values

This example shows how to subtract matrix and cell array values.

gsubtract([1 2 3; 4 5 6],[10;20])

ans =

    -9    -8    -7

   -16   -15   -14

gsubtract({1 2; 3 4},{1 3; 5 2})

ans =

  2×2 cell array

    [ 0]    [-1]

    [-2]    [ 2]
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gsubtract({1 2 3 4},{10;20;30})

ans =

  3×4 cell array

    [ -9]    [ -8]    [ -7]    [ -6]

    [-19]    [-18]    [-17]    [-16]

    [-29]    [-28]    [-27]    [-26]

See Also
gadd | gmultiply | gdivide | gnegate | gsqrt

Introduced in R2010b
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hardlim
Hard-limit transfer function

Graph and Symbol

Syntax

A = hardlim(N,FP)

Description

hardlim is a neural transfer function. Transfer functions calculate a layer’s output from
its net input.

A = hardlim(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q Boolean matrix with 1s where N ≥ 0.

info = hardlim('code') returns information according to the code string specified:

hardlim('name') returns the name of this function.

hardlim('output',FP) returns the [min max] output range.
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hardlim('active',FP) returns the [min max] active input range.

hardlim('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or
S-by-Q.

hardlim('fpnames') returns the names of the function parameters.

hardlim('fpdefaults') returns the default function parameters.

Examples

Here is how to create a plot of the hardlim transfer function.

n = -5:0.1:5;

a = hardlim(n);

plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlim';

Algorithms

hardlim(n) = 1 if n ≥ 0

                         0 otherwise

See Also
sim | hardlims

Introduced before R2006a
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hardlims
Symmetric hard-limit transfer function

Graph and Symbol

Syntax

A = hardlims(N,FP)

Description

hardlims is a neural transfer function. Transfer functions calculate a layer’s output
from its net input.

A = hardlims(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q +1/–1 matrix with +1s where N ≥ 0.

info = hardlims('code') returns information according to the code string specified:

hardlims('name') returns the name of this function.

hardlims('output',FP) returns the [min max] output range.
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hardlims('active',FP) returns the [min max] active input range.

hardlims('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or
S-by-Q.

hardlims('fpnames') returns the names of the function parameters.

hardlims('fpdefaults') returns the default function parameters.

Examples

Here is how to create a plot of the hardlims transfer function.

n = -5:0.1:5;

a = hardlims(n);

plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlims';

Algorithms

hardlims(n) = 1 if n ≥ 0, –1 otherwise.

See Also
sim | hardlim

Introduced before R2006a
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hextop

Hexagonal layer topology function

Syntax

hextop(dimensions)

Description

hextop calculates the neuron positions for layers whose neurons are arranged in an N-
dimensional hexagonal pattern.

hextop(dimensions) takes one argument:

dimensions Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors where N is the number of
dimensions and S is the product of dimensions.

Examples

Display Layer with Hexagonal Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in
an 8-by-5 hexagonal pattern.

pos = hextop([8 5]);

plotsom(pos)
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See Also
gridtop | randtop | tritop

Introduced before R2006a
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ind2vec
Convert indices to vectors

Syntax

ind2vec(ind)

ind2vec(ind,N)

Description

ind2vec and vec2ind allow indices to be represented either by themselves, or as
vectors containing a 1 in the row of the index they represent.

ind2vec(ind) takes one argument,

ind Row vector of indices

and returns a sparse matrix of vectors, with one 1 in each column, as indicated by ind.

ind2vec(ind,N) returns an N-by-M matrix, where N can be equal to or greater than the
maximum index.

Examples

Here four indices are defined and converted to vector representation.

ind = [1 3 2 3];

vec = ind2vec(ind)

vec =

   (1,1)        1

   (3,2)        1

   (2,3)        1

   (3,4)        1

Here a vector with all zeros in the last row is converted to indices and back, while
preserving the number of rows.
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vec = [0 0 1 0; 1 0 0 0; 0 1 0 0]'

vec =

     0     1     0

     0     0     1

     1     0     0

     0     0     0

[ind,n] = vec2ind(vec)

ind =

     3     1     2

n =

     4

vec2 = full(ind2vec(ind,n))

vec2 =

     0     1     0

     0     0     1

     1     0     0

     0     0     0

See Also
vec2ind | sub2ind | ind2sub

Introduced before R2006a
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init
Initialize neural network

Syntax

net = init(net)

To Get Help

Type help network/init.

Description

net = init(net) returns neural network net with weight and bias values updated
according to the network initialization function, indicated by net.initFcn, and the
parameter values, indicated by net.initParam.

Examples

Here a perceptron is created, and then configured so that its input, output, weight, and
bias dimensions match the input and target data.

x = [0 1 0 1; 0 0 1 1];

t = [0 0 0 1];

net = perceptron;

net = configure(net,x,t);

net.iw{1,1}

net.b{1}

Training the perceptron alters its weight and bias values.

net = train(net,x,t);

net.iw{1,1}

net.b{1}
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init reinitializes those weight and bias values.

net = init(net);

net.iw{1,1}

net.b{1}

The weights and biases are zeros again, which are the initial values used by perceptron
networks.

Algorithms

init calls net.initFcn to initialize the weight and bias values according to the
parameter values net.initParam.

Typically, net.initFcn is set to 'initlay', which initializes each layer’s weights and
biases according to its net.layers{i}.initFcn.

Backpropagation networks have net.layers{i}.initFcn set to 'initnw', which
calculates the weight and bias values for layer i using the Nguyen-Widrow initialization
method.

Other networks have net.layers{i}.initFcn set to 'initwb', which initializes each
weight and bias with its own initialization function. The most common weight and bias
initialization function is rands, which generates random values between –1 and 1.

See Also
sim | adapt | train | initlay | initnw | initwb | rands | revert

Introduced before R2006a
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initcon
Conscience bias initialization function

Syntax

initcon (S,PR)

Description

initcon is a bias initialization function that initializes biases for learning with the
learncon learning function.

initcon (S,PR) takes two arguments,

S Number of rows (neurons)
PR R-by-2 matrix of R = [Pmin Pmax] (default = [1 1])

and returns an S-by-1 bias vector.

Note that for biases, R is always 1. initcon could also be used to initialize weights, but
it is not recommended for that purpose.

Examples

Here initial bias values are calculated for a five-neuron layer.

b = initcon(5)

Network Use

You can create a standard network that uses initcon to initialize weights by calling
competlayer.

To prepare the bias of layer i of a custom network to initialize with initcon,
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1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set net.biases{i}.initFcn to 'initcon'.

To initialize the network, call init.

Algorithms

learncon updates biases so that each bias value b(i) is a function of the average
output c(i) of the neuron i associated with the bias.

initcon gets initial bias values by assuming that each neuron has responded to equal
numbers of vectors in the past.

See Also
competlayer | init | initlay | initwb | learncon

Introduced before R2006a
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initlay
Layer-by-layer network initialization function

Syntax

net = initlay(net)

info = initlay('code')

Description

initlay is a network initialization function that initializes each layer i according to its
own initialization function net.layers{i}.initFcn.

net = initlay(net) takes

net Neural network

and returns the network with each layer updated.

info = initlay('code') returns useful information for each supported code string:

'pnames' Names of initialization parameters
'pdefaults' Default initialization parameters

initlay does not have any initialization parameters.

Network Use

You can create a standard network that uses initlay by calling feedforwardnet,
cascadeforwardnet, and many other network functions.

To prepare a custom network to be initialized with initlay,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [],
because initlay has no initialization parameters.
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2 Set each net.layers{i}.initFcn to a layer initialization function. (Examples of
such functions are initwb and initnw.)

To initialize the network, call init.

Algorithms

The weights and biases of each layer i are initialized according to
net.layers{i}.initFcn.

See Also
cascadeforwardnet | init | initnw | initwb | feedforwardnet

Introduced before R2006a
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initlvq
LVQ weight initialization function

Syntax

initlvq('configure',x)

initlvq('configure',net,'IW',i,j,settings)

initlvq('configure',net,'LW',i,j,settings)

initlvq('configure',net,'b',i,)

Description

initlvq('configure',x) takes input data x and returns initialization settings for an
LVQ weights associated with that input.

initlvq('configure',net,'IW',i,j,settings) takes a network, and indices
indicating an input weight to layer i from input j, and that weights settings, and returns
new weight values.

initlvq('configure',net,'LW',i,j,settings) takes a network, and indices
indicating a layer weight to layer i from layer j, and that weights settings, and returns
new weight values.

initlvq('configure',net,'b',i,) takes a network, and an index indicating a bias
for layer i, and returns new bias values.

See Also
lvqnet | init

Introduced in R2010b
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initnw

Nguyen-Widrow layer initialization function

Syntax

net = initnw(net,i)

Description

initnw is a layer initialization function that initializes a layer’s weights and biases
according to the Nguyen-Widrow initialization algorithm. This algorithm chooses values
in order to distribute the active region of each neuron in the layer approximately evenly
across the layer’s input space. The values contain a degree of randomness, so they are not
the same each time this function is called.

initnw requires that the layer it initializes have a transfer function with a finite active
input range. This includes transfer functions such as tansig and satlin, but not
purelin, whose active input range is the infinite interval [-inf, inf]. Transfer
functions, such as tansig, will return their active input range as follows:

activeInputRange = tansig('active')

activeInputRange =

    -2     2

net = initnw(net,i) takes two arguments,

net Neural network
i Index of a layer

and returns the network with layer i’s weights and biases updated.

There is a random element to Nguyen-Widrow initialization. Unless the default random
generator is set to the same seed before each call to initnw, it will generate different
weight and bias values each time.
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Network Use

You can create a standard network that uses initnw by calling feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be initialized with initnw,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [],
because initlay has no initialization parameters.

2 Set net.layers{i}.initFcn to 'initnw'.

To initialize the network, call init.

Algorithms

The Nguyen-Widrow method generates initial weight and bias values for a layer so that
the active regions of the layer’s neurons are distributed approximately evenly over the
input space.

Advantages over purely random weights and biases are

• Few neurons are wasted (because all the neurons are in the input space).
• Training works faster (because each area of the input space has neurons). The

Nguyen-Widrow method can only be applied to layers

• With a bias
• With weights whose weightFcn is dotprod
• With netInputFcn set to netsum
• With transferFcn whose active region is finite

If these conditions are not met, then initnw uses rands to initialize the layer’s weights
and biases.

See Also
cascadeforwardnet | init | initlay | initwb | feedforwardnet

Introduced before R2006a
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initwb
By weight and bias layer initialization function

Syntax

initwb(net,i)

Description

initwb is a layer initialization function that initializes a layer’s weights and biases
according to their own initialization functions.

initwb(net,i) takes two arguments,

net Neural network
i Index of a layer

and returns the network with layer i’s weights and biases updated.

Network Use

You can create a standard network that uses initwb by calling perceptron or
linearlayer.

To prepare a custom network to be initialized with initwb,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [],
because initlay has no initialization parameters.

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set each net.inputWeights{i,j}.initFcn to a weight initialization function.

Set each net.layerWeights{i,j}.initFcn to a weight initialization function.
Set each net.biases{i}.initFcn to a bias initialization function. (Examples of
such functions are rands and midpoint.)

To initialize the network, call init.
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Algorithms

Each weight (bias) in layer i is set to new values calculated according to its weight (bias)
initialization function.

See Also
init | initlay | initnw | linearlayer | perceptron

Introduced before R2006a
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initzero
Zero weight and bias initialization function

Syntax

W = initzero(S,PR)

b = initzero(S,[1 1])

Description

W = initzero(S,PR) takes two arguments,

S Number of rows (neurons)
PR R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R weight matrix of zeros.

b = initzero(S,[1 1]) returns an S-by-1 bias vector of zeros.

Examples

Here initial weights and biases are calculated for a layer with two inputs ranging over [0
1] and [-2 2] and four neurons.

W = initzero(5,[0 1; -2 2])

b = initzero(5,[1 1])

Network Use

You can create a standard network that uses initzero to initialize its weights by calling
newp or newlin.

To prepare the weights and the bias of layer i of a custom network to be initialized with
midpoint,
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1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set each net.inputWeights{i,j}.initFcn to 'initzero'.
4 Set each net.layerWeights{i,j}.initFcn to 'initzero'.
5 Set each net.biases{i}.initFcn to 'initzero'.

To initialize the network, call init.

See help newp and help newlin for initialization examples.

See Also
initwb | initlay | init

Introduced before R2006a
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isconfigured
Indicate if network inputs and outputs are configured

Syntax

[flag,inputflags,outputflags] = isconfigured(net)

Description

[flag,inputflags,outputflags] = isconfigured(net) takes a neural network
and returns three values,

flag True if all network inputs and outputs are configured (have
non-zero sizes)

inputflags Vector of true/false values for each configured/unconfigured
input

outputflags Vector of true/false values for each configured/unconfigured
output

Examples

Here are the flags returned for a new network before and after being configured:

net = feedforwardnet;

[flag,inputFlags,outputFlags] = isconfigured(net)

[x,t] = simplefit_dataset;

net = configure(net,x,t);

[flag,inputFlags,outputFlags] = isconfigured(net)

See Also
configure | unconfigure

Introduced in R2010b
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layrecnet
Layer recurrent neural network

Syntax

layrecnet(layerDelays,hiddenSizes,trainFcn)

Description

Layer recurrent neural networks are similar to feedforward networks, except that each
layer has a recurrent connection with a tap delay associated with it. This allows the
network to have an infinite dynamic response to time series input data. This network is
similar to the time delay (timedelaynet) and distributed delay (distdelaynet) neural
networks, which have finite input responses.

layrecnet(layerDelays,hiddenSizes,trainFcn) takes these arguments,

layerDelays Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns a layer recurrent neural network.

Examples

Recurrent Neural Network

Use a layer recurrent neural network to solve a simple time series problem.

[X,T] = simpleseries_dataset;

net = layrecnet(1:2,10);

[Xs,Xi,Ai,Ts] = preparets(net,X,T);

net = train(net,Xs,Ts,Xi,Ai);

view(net)
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Y = net(Xs,Xi,Ai);

perf = perform(net,Y,Ts)

perf =

   6.1239e-11

See Also
preparets | removedelay | distdelaynet | timedelaynet | narnet | narxnet

Introduced in R2010b
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learncon
Conscience bias learning function

Syntax

[dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learncon('code')

Description

learncon is the conscience bias learning function used to increase the net input to
neurons that have the lowest average output until each neuron responds approximately
an equal percentage of the time.

[dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

B S-by-1 bias vector
P 1-by-Q ones vector
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dB S-by-1 weight (or bias) change matrix

1-140



 learncon

LS New learning state

Learning occurs according to learncon’s learning parameter, shown here with its
default value.

LP.lr - 0.001 Learning rate

info = learncon('code') returns useful information for each supported code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Neural Network Toolbox 2.0 compatibility: The LP.lr described above equals 1 minus
the bias time constant used by trainc in the Neural Network Toolbox 2.0 software.

Examples

Here you define a random output A and bias vector W for a layer with three neurons. You
also define the learning rate LR.

a = rand(3,1);

b = rand(3,1);

lp.lr = 0.5;

Because learncon only needs these values to calculate a bias change (see “Algorithm”
below), use them to do so.

dW = learncon(b,[],[],[],a,[],[],[],[],[],lp,[])

Network Use

To prepare the bias of layer i of a custom network to learn with learncon,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes
trains’s default parameters.)
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3 Set net.inputWeights{i}.learnFcn to 'learncon'
4 Set each net.layerWeights{i,j}.learnFcn to 'learncon'. .(Each weight

learning parameter property is automatically set to learncon’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms

learncon calculates the bias change db for a given neuron by first updating each
neuron’s conscience, i.e., the running average of its output:

c = (1-lr)*c + lr*a

The conscience is then used to compute a bias for the neuron that is greatest for smaller
conscience values.

b = exp(1-log(c)) - b

(learncon recovers C from the bias values each time it is called.)

See Also
learnk | learnos | adapt | train

Introduced before R2006a
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learngd
Gradient descent weight and bias learning function

Syntax

[dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learngd('code')

Description

learngd is the gradient descent weight and bias learning function.

[dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs:

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q output gradient with respect to performance x Q weighted

input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be []

and returns

dW S-by-R weight (or bias) change matrix
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LS New learning state

Learning occurs according to learngd’s learning parameter, shown here with its default
value.

LP.lr - 0.01 Learning rate

info = learngd('code') returns useful information for each supported code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a random gradient gW for a weight going to a layer with three neurons
from an input with two elements. Also define a learning rate of 0.5.

gW = rand(3,2);

lp.lr = 0.5;

Because learngd only needs these values to calculate a weight change (see “Algorithm”
below), use them to do so.

dW = learngd([],[],[],[],[],[],[],gW,[],[],lp,[])

Network Use

You can create a standard network that uses learngd with newff, newcf, or newelm.
To prepare the weights and the bias of layer i of a custom network to adapt with
learngd,

1 Set net.adaptFcn to 'trains'. net.adaptParam automatically becomes
trains’s default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to 'learngd'.
Set each net.layerWeights{i,j}.learnFcn to 'learngd'. Set
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net.biases{i}.learnFcn to 'learngd'. Each weight and bias learning
parameter property is automatically set to learngd’s default parameters.

To allow the network to adapt,

1 Set net.adaptParam properties to desired values.
2 Call adapt with the network.

See help newff or help newcf for examples.

Algorithms

learngd calculates the weight change dW for a given neuron from the neuron’s input P
and error E, and the weight (or bias) learning rate LR, according to the gradient descent
dw = lr*gW.

See Also
adapt | learngdm | train

Introduced before R2006a
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learngdm
Gradient descent with momentum weight and bias learning function

Syntax

[dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learngdm('code')

Description

learngdm is the gradient descent with momentum weight and bias learning function.

[dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state
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Learning occurs according to learngdm’s learning parameters, shown here with their
default values.

LP.lr - 0.01 Learning rate
LP.mc - 0.9 Momentum constant

info = learngdm('code') returns useful information for each code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a random gradient G for a weight going to a layer with three neurons
from an input with two elements. Also define a learning rate of 0.5 and momentum
constant of 0.8:

gW = rand(3,2);

lp.lr = 0.5;

lp.mc = 0.8;

Because learngdm only needs these values to calculate a weight change (see “Algorithm”
below), use them to do so. Use the default initial learning state.

ls = [];

[dW,ls] = learngdm([],[],[],[],[],[],[],gW,[],[],lp,ls)

learngdm returns the weight change and a new learning state.

Network Use

You can create a standard network that uses learngdm with newff, newcf, or newelm.

To prepare the weights and the bias of layer i of a custom network to adapt with
learngdm,

1 Set net.adaptFcn to 'trains'. net.adaptParam automatically becomes
trains’s default parameters.
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2 Set each net.inputWeights{i,j}.learnFcn to 'learngdm'.
Set each net.layerWeights{i,j}.learnFcn to 'learngdm'. Set
net.biases{i}.learnFcn to 'learngdm'. Each weight and bias learning
parameter property is automatically set to learngdm’s default parameters.

To allow the network to adapt,

1 Set net.adaptParam properties to desired values.
2 Call adapt with the network.

See help newff or help newcf for examples.

Algorithms

learngdm calculates the weight change dW for a given neuron from the neuron’s input
P and error E, the weight (or bias) W, learning rate LR, and momentum constant MC,
according to gradient descent with momentum:

dW = mc*dWprev + (1-mc)*lr*gW

The previous weight change dWprev is stored and read from the learning state LS.

See Also
adapt | learngd | train

Introduced before R2006a
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learnh
Hebb weight learning rule

Syntax

[dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnh('code')

Description

learnh is the Hebb weight learning function.

[dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state
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Learning occurs according to learnh’s learning parameter, shown here with its default
value.

LP.lr - 0.01 Learning rate

info = learnh('code') returns useful information for each code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a random input P and output A for a layer with a two-element input and
three neurons. Also define the learning rate LR.

p = rand(2,1);

a = rand(3,1);

lp.lr = 0.5;

Because learnh only needs these values to calculate a weight change (see “Algorithm”
below), use them to do so.

dW = learnh([],p,[],[],a,[],[],[],[],[],lp,[])

Network Use

To prepare the weights and the bias of layer i of a custom network to learn with learnh,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnh'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnh'. (Each weight learning

parameter property is automatically set to learnh’s default parameters.)
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To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms

learnh calculates the weight change dW for a given neuron from the neuron’s input P,
output A, and learning rate LR according to the Hebb learning rule:

dw = lr*a*p'

References

Hebb, D.O., The Organization of Behavior, New York, Wiley, 1949

See Also
learnhd | adapt | train

Introduced before R2006a
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learnhd
Hebb with decay weight learning rule

Syntax

[dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnhd('code')

Description

learnhd is the Hebb weight learning function.

[dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state
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Learning occurs according to learnhd’s learning parameters, shown here with default
values.

LP.dr - 0.01 Decay rate
LP.lr - 0.1 Learning rate

info = learnhd('code') returns useful information for each code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weights W for a layer with a two-element
input and three neurons. Also define the decay and learning rates.

p = rand(2,1);

a = rand(3,1);

w = rand(3,2);

lp.dr = 0.05;

lp.lr = 0.5;

Because learnhd only needs these values to calculate a weight change (see “Algorithm”
below), use them to do so.

dW = learnhd(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use

To prepare the weights and the bias of layer i of a custom network to learn with
learnhd,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes
trains’s default parameters.)
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3 Set each net.inputWeights{i,j}.learnFcn to 'learnhd'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnhd'. (Each weight

learning parameter property is automatically set to learnhd’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms

learnhd calculates the weight change dW for a given neuron from the neuron’s input P,
output A, decay rate DR, and learning rate LR according to the Hebb with decay learning
rule:

dw = lr*a*p' - dr*w

See Also
learnh | adapt | train

Introduced before R2006a
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learnis
Instar weight learning function

Syntax

[dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnis('code')

Description

learnis is the instar weight learning function.

[dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state
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Learning occurs according to learnis’s learning parameter, shown here with its default
value.

LP.lr - 0.01 Learning rate

info = learnis('code') returns useful information for each code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weight matrix W for a layer with a two-
element input and three neurons. Also define the learning rate LR.

p = rand(2,1);

a = rand(3,1);

w = rand(3,2);

lp.lr = 0.5;

Because learnis only needs these values to calculate a weight change (see “Algorithm”
below), use them to do so.

dW = learnis(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use

To prepare the weights and the bias of layer i of a custom network so that it can learn
with learnis,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnis'.
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4 Set each net.layerWeights{i,j}.learnFcn to 'learnis'. (Each weight
learning parameter property is automatically set to learnis’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms

learnis calculates the weight change dW for a given neuron from the neuron’s input P,
output A, and learning rate LR according to the instar learning rule:

dw = lr*a*(p'-w)

References

Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland, Reidel Press, 1982

See Also
learnk | learnos | adapt | train

Introduced before R2006a
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learnk
Kohonen weight learning function

Syntax

[dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnk('code')

Description

learnk is the Kohonen weight learning function.

[dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state
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Learning occurs according to learnk’s learning parameter, shown here with its default
value.

LP.lr - 0.01 Learning rate

info = learnk('code') returns useful information for each code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weight matrix W for a layer with a two-
element input and three neurons. Also define the learning rate LR.

p = rand(2,1);

a = rand(3,1);

w = rand(3,2);

lp.lr = 0.5;

Because learnk only needs these values to calculate a weight change (see “Algorithm”
below), use them to do so.

dW = learnk(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use

To prepare the weights of layer i of a custom network to learn with learnk,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnk'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnk'. (Each weight learning

parameter property is automatically set to learnk’s default parameters.)
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To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms

learnk calculates the weight change dW for a given neuron from the neuron’s input P,
output A, and learning rate LR according to the Kohonen learning rule:

dw = lr*(p'-w), if a ~= 0; = 0, otherwise

References

Kohonen, T., Self-Organizing and Associative Memory, New York, Springer-Verlag, 1984

See Also
learnis | learnos | adapt | train

Introduced before R2006a
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learnlv1
LVQ1 weight learning function

Syntax

[dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnlv1('code')

Description

learnlv1 is the LVQ1 weight learning function.

[dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state
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Learning occurs according to learnlv1’s learning parameter, shown here with its
default value.

LP.lr - 0.01 Learning rate

info = learnlv1('code') returns useful information for each code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, weight matrix W, and output gradient gA for
a layer with a two-element input and three neurons. Also define the learning rate LR.

p = rand(2,1);

w = rand(3,2);

a = compet(negdist(w,p));

gA = [-1;1; 1];

lp.lr = 0.5;

Because learnlv1 only needs these values to calculate a weight change (see “Algorithm”
below), use them to do so.

dW = learnlv1(w,p,[],[],a,[],[],[],gA,[],lp,[])

Network Use

You can create a standard network that uses learnlv1 with lvqnet. To prepare the
weights of layer i of a custom network to learn with learnlv1,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv1'.
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4 Set each net.layerWeights{i,j}.learnFcn to 'learnlv1'. (Each weight
learning parameter property is automatically set to learnlv1’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms

learnlv1 calculates the weight change dW for a given neuron from the neuron’s input P,
output A, output gradient gA, and learning rate LR, according to the LVQ1 rule, given i,
the index of the neuron whose output a(i) is 1:

dw(i,:) = +lr*(p-w(i,:)) if gA(i) = 0;= -lr*(p-w(i,:)) if gA(i) = -1

See Also
learnlv2 | adapt | train

Introduced before R2006a
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learnlv2
LVQ2.1 weight learning function

Syntax

[dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnlv2('code')

Description

learnlv2 is the LVQ2 weight learning function.

[dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state
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Learning occurs according to learnlv2’s learning parameter, shown here with its
default value.

LP.lr - 0.01 Learning rate
LP.window - 0.25 Window size (0 to 1, typically 0.2 to 0.3)

info = learnlv2('code') returns useful information for each code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a sample input P, output A, weight matrix W, and output gradient gA for
a layer with a two-element input and three neurons. Also define the learning rate LR.

p = rand(2,1);

w = rand(3,2);

n = negdist(w,p);

a = compet(n);

gA = [-1;1; 1];

lp.lr = 0.5;

Because learnlv2 only needs these values to calculate a weight change (see “Algorithm”
below), use them to do so.

dW = learnlv2(w,p,[],n,a,[],[],[],gA,[],lp,[])

Network Use

You can create a standard network that uses learnlv2 with lvqnet.

To prepare the weights of layer i of a custom network to learn with learnlv2,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes
trainr’s default parameters.)
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2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv2'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnlv2'. (Each weight

learning parameter property is automatically set to learnlv2’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms

learnlv2 implements Learning Vector Quantization 2.1, which works as follows:

For each presentation, if the winning neuron i should not have won, and the runnerup j
should have, and the distance di between the winning neuron and the input p is roughly
equal to the distance dj from the runnerup neuron to the input p according to the given
window,

min(di/dj, dj/di) > (1-window)/(1+window)

then move the winning neuron i weights away from the input vector, and move the
runnerup neuron j weights toward the input according to

dw(i,:) = - lp.lr*(p'-w(i,:))

dw(j,:) = + lp.lr*(p'-w(j,:))

See Also
learnlv1 | adapt | train

Introduced before R2006a
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learnos
Outstar weight learning function

Syntax

[dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnos('code')

Description

learnos is the outstar weight learning function.

[dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state
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Learning occurs according to learnos’s learning parameter, shown here with its default
value.

LP.lr - 0.01 Learning rate

info = learnos('code') returns useful information for each code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weight matrix W for a layer with a two-
element input and three neurons. Also define the learning rate LR.

p = rand(2,1);

a = rand(3,1);

w = rand(3,2);

lp.lr = 0.5;

Because learnos only needs these values to calculate a weight change (see “Algorithm”
below), use them to do so.

dW = learnos(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use

To prepare the weights and the bias of layer i of a custom network to learn with
learnos,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnos'.
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4 Set each net.layerWeights{i,j}.learnFcn to 'learnos'. (Each weight
learning parameter property is automatically set to learnos’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms

learnos calculates the weight change dW for a given neuron from the neuron’s input P,
output A, and learning rate LR according to the outstar learning rule:

dw = lr*(a-w)*p'

References

Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland, Reidel Press, 1982

See Also
learnis | learnk | adapt | train

Introduced before R2006a
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learnp
Perceptron weight and bias learning function

Syntax

[dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnp('code')

Description

learnp is the perceptron weight/bias learning function.

[dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or b, and S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state
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info = learnp('code') returns useful information for each code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a random input P and error E for a layer with a two-element input and
three neurons.

p = rand(2,1);

e = rand(3,1);

Because learnp only needs these values to calculate a weight change (see “Algorithm”
below), use them to do so.

dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])

Network Use

You can create a standard network that uses learnp with newp.

To prepare the weights and the bias of layer i of a custom network to learn with learnp,

1 Set net.trainFcn to 'trainb'. (net.trainParam automatically becomes
trainb’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnp'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnp'.
5 Set net.biases{i}.learnFcn to 'learnp'. (Each weight and bias learning

parameter property automatically becomes the empty matrix, because learnp has
no learning parameters.)

To train the network (or enable it to adapt),
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1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

See help newp for adaption and training examples.

Algorithms

learnp calculates the weight change dW for a given neuron from the neuron’s input P
and error E according to the perceptron learning rule:

dw = 0, if e = 0

     = p', if e = 1

     = -p', if e = -1

This can be summarized as

dw = e*p'

References

Rosenblatt, F., Principles of Neurodynamics, Washington, D.C., Spartan Press, 1961

See Also
adapt | learnpn | train

Introduced before R2006a
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learnpn
Normalized perceptron weight and bias learning function

Syntax

[dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnpn('code')

Description

learnpn is a weight and bias learning function. It can result in faster learning than
learnp when input vectors have widely varying magnitudes.

[dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
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LS New learning state

info = learnpn('code') returns useful information for each code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a random input P and error E for a layer with a two-element input and
three neurons.

p = rand(2,1);

e = rand(3,1);

Because learnpn only needs these values to calculate a weight change (see “Algorithm”
below), use them to do so.

dW = learnpn([],p,[],[],[],[],e,[],[],[],[],[])

Network Use

You can create a standard network that uses learnpn with newp.

To prepare the weights and the bias of layer i of a custom network to learn with
learnpn,

1 Set net.trainFcn to 'trainb'. (net.trainParam automatically becomes
trainb’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnpn'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnpn'.
5 Set net.biases{i}.learnFcn to 'learnpn'. (Each weight and bias learning

parameter property automatically becomes the empty matrix, because learnpn has
no learning parameters.)
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To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

See help newp for adaption and training examples.

Limitations

Perceptrons do have one real limitation. The set of input vectors must be linearly
separable if a solution is to be found. That is, if the input vectors with targets of 1 cannot
be separated by a line or hyperplane from the input vectors associated with values of 0,
the perceptron will never be able to classify them correctly.

Algorithms

learnpn calculates the weight change dW for a given neuron from the neuron’s input P
and error E according to the normalized perceptron learning rule:

pn = p / sqrt(1 + p(1)^2 + p(2)^2) + ... + p(R)^2)

dw = 0,  if e = 0

     = pn', if e = 1

     = -pn', if e = -1

The expression for dW can be summarized as

dw = e*pn'

See Also
adapt | learnp | train

Introduced before R2006a
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learnsom

Self-organizing map weight learning function

Syntax

[dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnsom('code')

Description

learnsom is the self-organizing map weight learning function.

[dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
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LS New learning state

Learning occurs according to learnsom’s learning parameters, shown here with their
default values.

LP.order_lr 0.9 Ordering phase learning rate
LP.order_steps 1000 Ordering phase steps
LP.tune_lr 0.02 Tuning phase learning rate
LP.tune_nd 1 Tuning phase neighborhood distance

info = learnsom('code') returns useful information for each code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weight matrix W for a layer with a
two-element input and six neurons. You also calculate positions and distances for the
neurons, which are arranged in a 2-by-3 hexagonal pattern. Then you define the four
learning parameters.

p = rand(2,1);

a = rand(6,1);

w = rand(6,2);

pos = hextop(2,3);

d = linkdist(pos);

lp.order_lr = 0.9;

lp.order_steps = 1000;

lp.tune_lr = 0.02;

lp.tune_nd = 1;

Because learnsom only needs these values to calculate a weight change (see “Algorithm”
below), use them to do so.

ls = [];

[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)
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Network Use

You can create a standard network that uses learnsom with newsom.

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnsom'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnsom'.
5 Set net.biases{i}.learnFcn to 'learnsom'. (Each weight learning parameter

property is automatically set to learnsom’s default parameters.)

To train the network (or enable it to adapt):

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms

learnsom calculates the weight change dW for a given neuron from the neuron’s input P,
activation A2, and learning rate LR:

dw = lr*a2*(p'-w)

where the activation A2 is found from the layer output A, neuron distances D, and the
current neighborhood size ND:

a2(i,q) = 1,  if a(i,q) = 1

   = 0.5, if a(j,q) = 1 and D(i,j) <= nd

   = 0, otherwise

The learning rate LR and neighborhood size NS are altered through two phases: an
ordering phase and a tuning phase.

The ordering phases lasts as many steps as LP.order_steps. During this phase LR
is adjusted from LP.order_lr down to LP.tune_lr, and ND is adjusted from the
maximum neuron distance down to 1. It is during this phase that neuron weights are
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expected to order themselves in the input space consistent with the associated neuron
positions.

During the tuning phase LR decreases slowly from LP.tune_lr, and ND is always set
to LP.tune_nd. During this phase the weights are expected to spread out relatively
evenly over the input space while retaining their topological order, determined during
the ordering phase.

See Also
adapt | train

Introduced before R2006a
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learnsomb
Batch self-organizing map weight learning function

Syntax

[dW,LS] = learnsomb(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnsomb('code')

Description

learnsomb is the batch self-organizing map weight learning function.

[dW,LS] = learnsomb(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs:

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns the following:

dW S-by-R weight (or bias) change matrix
LS New learning state
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Learning occurs according to learnsomb’s learning parameter, shown here with its
default value:

LP.init_neighborhood 3 Initial neighborhood size
LP.steps 100 Ordering phase steps

info = learnsomb('code') returns useful information for each code string:

'pnames' Returns names of learning parameters.
'pdefaults' Returns default learning parameters.
'needg' Returns 1 if this function uses gW or gA.

Examples

This example defines a random input P, output A, and weight matrix W for a layer with a
2-element input and 6 neurons. This example also calculates the positions and distances
for the neurons, which appear in a 2-by-3 hexagonal pattern.

p = rand(2,1);

a = rand(6,1);

w = rand(6,2);

pos = hextop(2,3);

d = linkdist(pos);

lp = learnsomb('pdefaults');

Because learnsom only needs these values to calculate a weight change (see Algorithm).

ls = [];

[dW,ls] = learnsomb(w,p,[],[],a,[],[],[],[],d,lp,ls)

Network Use

You can create a standard network that uses learnsomb with selforgmap. To prepare
the weights of layer i of a custom network to learn with learnsomb:

1 Set NET.trainFcn to 'trainr'. (NET.trainParam automatically becomes
trainr’s default parameters.)
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2 Set NET.adaptFcn to 'trains'. (NET.adaptParam automatically becomes
trains’s default parameters.)

3 Set each NET.inputWeights{i,j}.learnFcn to 'learnsomb'.
4 Set each NET.layerWeights{i,j}.learnFcn to 'learnsomb'. (Each weight

learning parameter property is automatically set to learnsomb’s default
parameters.)

To train the network (or enable it to adapt):

1 Set NET.trainParam (or NET.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms

learnsomb calculates the weight changes so that each neuron’s new weight vector is the
weighted average of the input vectors that the neuron and neurons in its neighborhood
responded to with an output of 1.

The ordering phase lasts as many steps as LP.steps.

During this phase, the neighborhood is gradually reduced from a maximum size of
LP.init_neighborhood down to 1, where it remains from then on.

See Also
adapt | selforgmap | train

Introduced in R2008a
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learnwh
Widrow-Hoff weight/bias learning function

Syntax

[dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnwh('code')

Description

learnwh is the Widrow-Hoff weight/bias learning function, and is also known as the
delta or least mean squared (LMS) rule.

[dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or b, and S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
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LS New learning state

Learning occurs according to the learnwh learning parameter, shown here with its
default value.

LP.lr —

0.01

Learning rate

info = learnwh('code') returns useful information for each code string:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples

Here you define a random input P and error E for a layer with a two-element input and
three neurons. You also define the learning rate LR learning parameter.

p = rand(2,1);

e = rand(3,1);

lp.lr = 0.5;

Because learnwh needs only these values to calculate a weight change (see “Algorithm”
below), use them to do so.

dW = learnwh([],p,[],[],[],[],e,[],[],[],lp,[])

Network Use

You can create a standard network that uses learnwh with linearlayer.

To prepare the weights and the bias of layer i of a custom network to learn with
learnwh,

1 Set net.trainFcn to 'trainb'. net.trainParam automatically becomes
trainb’s default parameters.
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2 Set net.adaptFcn to 'trains'. net.adaptParam automatically becomes
trains’s default parameters.

3 Set each net.inputWeights{i,j}.learnFcn to 'learnwh'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnwh'.
5 Set net.biases{i}.learnFcn to 'learnwh'. Each weight and bias learning

parameter property is automatically set to the learnwh default parameters.

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (or adapt).

Algorithms

learnwh calculates the weight change dW for a given neuron from the neuron’s input
P and error E, and the weight (or bias) learning rate LR, according to the Widrow-Hoff
learning rule:

dw = lr*e*pn'

References

Widrow, B., and M.E. Hoff, “Adaptive switching circuits,” 1960 IRE WESCON
Convention Record, New York IRE, pp. 96–104, 1960

Widrow, B., and S.D. Sterns, Adaptive Signal Processing, New York, Prentice-Hall, 1985

See Also
adapt | linearlayer | train

Introduced before R2006a
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linearlayer
Linear layer

Syntax
linearlayer(inputDelays,widrowHoffLR)

Description
Linear layers are single layers of linear neurons. They may be static, with input delays
of 0, or dynamic, with input delays greater than 0. They can be trained on simple linear
time series problems, but often are used adaptively to continue learning while deployed
so they can adjust to changes in the relationship between inputs and outputs while being
used.

If a network is needed to solve a nonlinear time series relationship, then better networks
to try include timedelaynet, narxnet, and narnet.

linearlayer(inputDelays,widrowHoffLR) takes these arguments,

inputDelays Row vector of increasing 0 or positive delays (default = 1:2)
widrowHoffLR Widrow-Hoff learning rate (default = 0.01)

and returns a linear layer.

If the learning rate is too small, learning will happen very slowly. However, a greater
danger is that it may be too large and learning will become unstable resulting in large
changes to weight vectors and errors increasing instead of decreasing. If a data set is
available which characterizes the relationship the layer is to learn, the maximum stable
learning rate can be calculated with maxlinlr.

Examples

Create and Train a Linear Layer

Here a linear layer is trained on a simple time series problem.
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x = {0 -1 1 1 0 -1 1 0 0 1};

t = {0 -1 0 2 1 -1 0 1 0 1};

net = linearlayer(1:2,0.01);

[Xs,Xi,Ai,Ts] = preparets(net,x,t);

net = train(net,Xs,Ts,Xi,Ai);

view(net)

Y = net(Xs,Xi);

perf = perform(net,Ts,Y)

perf =

    0.2396

See Also
preparets | removedelay | timedelaynet | narnet | narxnet

Introduced in R2010b
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linkdist
Link distance function

Syntax

d = linkdist(pos)

Description

linkdist is a layer distance function used to find the distances between the layer’s
neurons given their positions.

d = linkdist(pos) takes one argument,

pos N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.

Examples

Here you define a random matrix of positions for 10 neurons arranged in three-
dimensional space and find their distances.

pos = rand(3,10);

D = linkdist(pos)

Network Use

You can create a standard network that uses linkdist as a distance function by calling
selforgmap.

To change a network so that a layer’s topology uses linkdist, set
net.layers{i}.distanceFcn to 'linkdist'.

In either case, call sim to simulate the network with dist.
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Algorithms

The link distance D between two position vectors Pi and Pj from a set of S vectors is

Dij = 0, if i == j

     = 1, if (sum((Pi-Pj).^2)).^0.5 is <= 1

     = 2, if k exists, Dik = Dkj = 1

     = 3, if k1, k2 exist, Dik1 = Dk1k2 = Dk2j = 1

     = N, if k1..kN exist, Dik1 = Dk1k2 = ...= DkNj = 1

     = S, if none of the above conditions apply

See Also
dist | mandist | selforgmap | sim

Introduced before R2006a
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logsig
Log-sigmoid transfer function

Graph and Symbol

Syntax

A = logsig(N,FP)

dA_dN = logsig('dn',N,A,FP)

info = logsig('code')

Description

logsig is a transfer function. Transfer functions calculate a layer’s output from its net
input.

A = logsig(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements squashed into [0, 1].

dA_dN = logsig('dn',N,A,FP) returns the S-by-Q derivative of A with respect to N.
If A or FP is not supplied or is set to [], FP reverts to the default parameters, and A is
calculated from N.
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info = logsig('code') returns useful information for each code string:

logsig('name') returns the name of this function.

logsig('output',FP) returns the [min max] output range.

logsig('active',FP) returns the [min max] active input range.

logsig('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-
by-Q.

logsig('fpnames') returns the names of the function parameters.

logsig('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the logsig transfer function.

n = -5:0.1:5;

a = logsig(n);

plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'logsig';

Algorithms

logsig(n) = 1 / (1 + exp(-n))

See Also
sim | tansig

Introduced before R2006a
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lvqnet

Learning vector quantization neural network

Syntax

lvqnet(hiddenSize,lvqLR,lvqLF)

Description

LVQ (learning vector quantization) neural networks consist of two layers. The first layer
maps input vectors into clusters that are found by the network during training. The
second layer merges groups of first layer clusters into the classes defined by the target
data.

The total number of first layer clusters is determined by the number of hidden neurons.
The larger the hidden layer the more clusters the first layer can learn, and the more
complex mapping of input to target classes can be made. The relative number of first
layer clusters assigned to each target class are determined according to the distribution
of target classes at the time of network initialization. This occurs when the network is
automatically configured the first time train is called, or manually configured with the
function configure, or manually initialized with the function init is called.

lvqnet(hiddenSize,lvqLR,lvqLF) takes these arguments,

hiddenSize Size of hidden layer (default = 10)
lvqLR LVQ learning rate (default = 0.01)
lvqLF LVQ learning function (default = 'learnlv1')

and returns an LVQ neural network.

The other option for the lvq learning function is learnlv2.
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Examples

Train a Learning Vector Quantization Network

Here, an LVQ network is trained to classify iris flowers.

[x,t] = iris_dataset;

net = lvqnet(10);

net.trainParam.epochs = 50;

net = train(net,x,t);

view(net)

y = net(x);

perf = perform(net,y,t)

classes = vec2ind(y);

perf =

    0.0489

See Also
competlayer | patternnet | selforgmap

Introduced in R2010b
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lvqoutputs
LVQ outputs processing function

Syntax

[X,settings] = lvqoutputs(X)

X = lvqoutputs('apply',X,PS)

X = lvqoutputs('reverse',X,PS)

dx_dy = lvqoutputs('dx_dy',X,X,PS)

Description

[X,settings] = lvqoutputs(X) returns its argument unchanged, but stores the
ratio of target classes in the settings for use by initlvq to initialize weights.

X = lvqoutputs('apply',X,PS) returns X.

X = lvqoutputs('reverse',X,PS) returns X.

dx_dy = lvqoutputs('dx_dy',X,X,PS) returns the identity derivative.

See Also
lvqnet | initlvq

Introduced in R2010b
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mae
Mean absolute error performance function

Syntax

perf = mae(E,Y,X,FP)

Description

mae is a network performance function. It measures network performance as the mean of
absolute errors.

perf = mae(E,Y,X,FP) takes E and optional function parameters,

E Matrix or cell array of error vectors
Y Matrix or cell array of output vectors (ignored)
X Vector of all weight and bias values (ignored)
FP Function parameters (ignored)

and returns the mean absolute error.

dPerf_dx = mae('dx',E,Y,X,perf,FP) returns the derivative of perf with respect
to X.

info = mae('code') returns useful information for each code string:

mae('name') returns the name of this function.

mae('pnames') returns the names of the training parameters.

mae('pdefaults') returns the default function parameters.

Examples

Create and configure a perceptron to have one input and one neuron:
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net = perceptron;

net = configure(net,0,0);

The network is given a batch of inputs P. The error is calculated by subtracting the
output A from target T. Then the mean absolute error is calculated.

p = [-10 -5 0 5 10];

t = [0 0 1 1 1];

y = net(p)

e = t-y

perf = mae(e)

Note that mae can be called with only one argument because the other arguments are
ignored. mae supports those arguments to conform to the standard performance function
argument list.

Network Use

You can create a standard network that uses mae with perceptron.

To prepare a custom network to be trained with mae, set net.performFcn to 'mae'.
This automatically sets net.performParam to the empty matrix [], because mae has no
performance parameters.

In either case, calling train or adapt, results in mae being used to calculate
performance.

See Also
mse | perceptron

Introduced before R2006a
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mandist
Manhattan distance weight function

Syntax

Z = mandist(W,P)

D = mandist(pos)

Description

mandist is the Manhattan distance weight function. Weight functions apply weights to
an input to get weighted inputs.

Z = mandist(W,P) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors

and returns the S-by-Q matrix of vector distances.

mandist is also a layer distance function, which can be used to find the distances
between neurons in a layer.

D = mandist(pos) takes one argument,

pos S row matrix of neuron positions

and returns the S-by-S matrix of distances.

Examples

Here you define a random weight matrix W and input vector P and calculate the
corresponding weighted input Z.

W = rand(4,3);
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P = rand(3,1);

Z = mandist(W,P)

Here you define a random matrix of positions for 10 neurons arranged in three-
dimensional space and then find their distances.

pos = rand(3,10);

D = mandist(pos)

Network Use

To change a network so an input weight uses mandist, set
net.inputWeights{i,j}.weightFcn to 'mandist'. For a layer weight, set
net.layerWeights{i,j}.weightFcn to 'mandist'.

To change a network so a layer’s topology uses mandist, set
net.layers{i}.distanceFcn to 'mandist'.

In either case, call sim to simulate the network with dist. See newpnn or newgrnn for
simulation examples.

Algorithms

The Manhattan distance D between two vectors X and Y is

D = sum(abs(x-y))

See Also
dist | linkdist | sim

Introduced before R2006a
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mapminmax
Process matrices by mapping row minimum and maximum values to [-1 1]

Syntax

[Y,PS] = mapminmax(X,YMIN,YMAX)

[Y,PS] = mapminmax(X,FP)

Y = mapminmax('apply',X,PS)

X = mapminmax('reverse',Y,PS)

dx_dy = mapminmax('dx_dy',X,Y,PS)

Description

mapminmax processes matrices by normalizing the minimum and maximum values of
each row to [YMIN, YMAX].

[Y,PS] = mapminmax(X,YMIN,YMAX) takes X and optional parameters

X N-by-Q matrix
YMIN Minimum value for each row of Y (default is –1)
YMAX Maximum value for each row of Y (default is +1)

and returns

Y N-by-Q matrix
PS Process settings that allow consistent processing of values

[Y,PS] = mapminmax(X,FP) takes parameters as a struct: FP.ymin, FP.ymax.

Y = mapminmax('apply',X,PS) returns Y, given X and settings PS.

X = mapminmax('reverse',Y,PS) returns X, given Y and settings PS.

dx_dy = mapminmax('dx_dy',X,Y,PS) returns the reverse derivative.
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Examples

Here is how to format a matrix so that the minimum and maximum values of each row
are mapped to default interval [-1,+1].

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]

[y1,PS] = mapminmax(x1)

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]

y2 = mapminmax('apply',x2,PS)

Reverse the processing of y1 to get x1 again.

x1_again = mapminmax('reverse',y1,PS)

Definitions

Normalize Inputs and Targets Using mapminmax

Before training, it is often useful to scale the inputs and targets so that they always fall
within a specified range. The function mapminmax scales inputs and targets so that they
fall in the range [–1,1]. The following code illustrates how to use this function.

[pn,ps] = mapminmax(p);

[tn,ts] = mapminmax(t);

net = train(net,pn,tn);

The original network inputs and targets are given in the matrices p and t. The
normalized inputs and targets pn and tn that are returned will all fall in the interval
[–1,1]. The structures ps and ts contain the settings, in this case the minimum and
maximum values of the original inputs and targets. After the network has been trained,
the ps settings should be used to transform any future inputs that are applied to the
network. They effectively become a part of the network, just like the network weights
and biases.

If mapminmax is used to scale the targets, then the output of the network will be trained
to produce outputs in the range [–1,1]. To convert these outputs back into the same units
that were used for the original targets, use the settings ts. The following code simulates

1-200



 mapminmax

the network that was trained in the previous code, and then converts the network output
back into the original units.

an = sim(net,pn);

a = mapminmax('reverse',an,ts);

The network output an corresponds to the normalized targets tn. The unnormalized
network output a is in the same units as the original targets t.

If mapminmax is used to preprocess the training set data, then whenever the trained
network is used with new inputs they should be preprocessed with the minimum and
maximums that were computed for the training set stored in the settings ps. The
following code applies a new set of inputs to the network already trained.

pnewn = mapminmax('apply',pnew,ps);

anewn = sim(net,pnewn);

anew = mapminmax('reverse',anewn,ts);

For most networks, including feedforwardnet, these steps are done automatically, so
that you only need to use the sim command.

Algorithms

It is assumed that X has only finite real values, and that the elements of each row are not
all equal. (If xmax=xmin or if either xmax or xmin are non-finite, then y=x and no change
occurs.)

y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;

See Also
fixunknowns | mapstd | processpca

Introduced in R2006a
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mapstd
Process matrices by mapping each row’s means to 0 and deviations to 1

Syntax

[Y,PS] = mapstd(X,ymean,ystd)

[Y,PS] = mapstd(X,FP)

Y = mapstd('apply',X,PS)

X = mapstd('reverse',Y,PS)

dx_dy = mapstd('dx_dy',X,Y,PS)

Description

mapstd processes matrices by transforming the mean and standard deviation of each row
to ymean and ystd.

[Y,PS] = mapstd(X,ymean,ystd) takes X and optional parameters,

X N-by-Q matrix
ymean Mean value for each row of Y (default is 0)
ystd Standard deviation for each row of Y (default is 1)

and returns

Y N-by-Q matrix
PS Process settings that allow consistent processing of values

[Y,PS] = mapstd(X,FP) takes parameters as a struct: FP.ymean, FP.ystd.

Y = mapstd('apply',X,PS) returns Y, given X and settings PS.

X = mapstd('reverse',Y,PS) returns X, given Y and settings PS.

dx_dy = mapstd('dx_dy',X,Y,PS) returns the reverse derivative.
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Examples

Here you format a matrix so that the minimum and maximum values of each row are
mapped to default mean and STD of 0 and 1.

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]

[y1,PS] = mapstd(x1)

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]

y2 = mapstd('apply',x2,PS)

Reverse the processing of y1 to get x1 again.

x1_again = mapstd('reverse',y1,PS)

Definitions

Normalize Network Inputs and Targets Using mapstd

Another approach for scaling network inputs and targets is to normalize the mean and
standard deviation of the training set. The function mapstd normalizes the inputs and
targets so that they will have zero mean and unity standard deviation. The following
code illustrates the use of mapstd.

[pn,ps] = mapstd(p);

[tn,ts] = mapstd(t);

The original network inputs and targets are given in the matrices p and t. The
normalized inputs and targets pn and tn that are returned will have zero means and
unity standard deviation. The settings structures ps and ts contain the means and
standard deviations of the original inputs and original targets. After the network has
been trained, you should use these settings to transform any future inputs that are
applied to the network. They effectively become a part of the network, just like the
network weights and biases.

If mapstd is used to scale the targets, then the output of the network is trained to
produce outputs with zero mean and unity standard deviation. To convert these outputs
back into the same units that were used for the original targets, use ts. The following
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code simulates the network that was trained in the previous code, and then converts the
network output back into the original units.

an = sim(net,pn);

a = mapstd('reverse',an,ts);

The network output an corresponds to the normalized targets tn. The unnormalized
network output a is in the same units as the original targets t.

If mapstd is used to preprocess the training set data, then whenever the trained network
is used with new inputs, you should preprocess them with the means and standard
deviations that were computed for the training set using ps. The following commands
apply a new set of inputs to the network already trained:

pnewn = mapstd('apply',pnew,ps);

anewn = sim(net,pnewn);

anew = mapstd('reverse',anewn,ts);

For most networks, including feedforwardnet, these steps are done automatically, so
that you only need to use the sim command.

Algorithms

It is assumed that X has only finite real values, and that the elements of each row are not
all equal.

y = (x-xmean)*(ystd/xstd) + ymean;

See Also
fixunknowns | mapminmax | processpca

Introduced in R2006a
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maxlinlr
Maximum learning rate for linear layer

Syntax

lr = maxlinlr(P)

lr = maxlinlr(P,'bias')

Description

maxlinlr is used to calculate learning rates for linearlayer.

lr = maxlinlr(P) takes one argument,

P R-by-Q matrix of input vectors

and returns the maximum learning rate for a linear layer without a bias that is to be
trained only on the vectors in P.

lr = maxlinlr(P,'bias') returns the maximum learning rate for a linear layer with
a bias.

Examples

Here you define a batch of four two-element input vectors and find the maximum
learning rate for a linear layer with a bias.

P = [1 2 -4 7; 0.1 3 10 6];

lr = maxlinlr(P,'bias')

See Also
learnwh | linearlayer

Introduced before R2006a
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meanabs
Mean of absolute elements of matrix or matrices

Syntax

[m,n] = meanabs(x)

Description

[m,n] = meanabs(x) takes a matrix or cell array of matrices and returns,

m Mean value of all absolute finite values
n Number of finite values

If x contains no finite values, the mean returned is 0.

Examples
m = meanabs([1 2;3 4])

[m,n] = meanabs({[1 2; NaN 4], [4 5; 2 3]})

See Also
meansqr | sumabs | sumsqr

Introduced in R2010b
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meansqr
Mean of squared elements of matrix or matrices

Syntax

[m,n] = meansqr(x)

Description

[m,n] = meansqr(x) takes a matrix or cell array of matrices and returns,

m Mean value of all squared finite values
n Number of finite values

If x contains no finite values, the mean returned is 0.

Examples
m = meansqr([1 2;3 4])

[m,n] = meansqr({[1 2; NaN 4], [4 5; 2 3]})

See Also
meanabs | sumabs | sumsqr

Introduced in R2010b
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midpoint
Midpoint weight initialization function

Syntax

W = midpoint(S,PR)

Description

midpoint is a weight initialization function that sets weight (row) vectors to the center
of the input ranges.

W = midpoint(S,PR) takes two arguments,

S Number of rows (neurons)
PR R-by-Q matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R matrix with rows set to (Pmin+Pmax)'/2.

Examples

Here initial weight values are calculated for a five-neuron layer with input elements
ranging over [0 1] and [-2 2].

W = midpoint(5,[0 1; -2 2])

Network Use

You can create a standard network that uses midpoint to initialize weights by calling
newc.

To prepare the weights and the bias of layer i of a custom network to initialize with
midpoint,
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1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set each net.inputWeights{i,j}.initFcn to 'midpoint'. Set each

net.layerWeights{i,j}.initFcn to 'midpoint'.

To initialize the network, call init.

See Also
initwb | initlay | init

Introduced before R2006a
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minmax
Ranges of matrix rows

Syntax

pr = minmax(P)

Description

pr = minmax(P) takes one argument,

P R-by-Q matrix

and returns the R-by-2 matrix PR of minimum and maximum values for each row of P.

Alternatively, P can be an M-by-N cell array of matrices. Each matrix P{i,j} should have
Ri rows and Q columns. In this case, minmax returns an M-by-1 cell array where the mth
matrix is an Ri-by-2 matrix of the minimum and maximum values of elements for the
matrix on the ith row of P.

Examples
P = [0 1 2; -1 -2 -0.5]

pr = minmax(P)

P = {[0 1; -1 -2] [2 3 -2; 8 0 2]; [1 -2] [9 7 3]};

pr = minmax(P)

Introduced before R2006a
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mse
Mean squared normalized error performance function

Syntax

perf = mse(net,t,y,ew)

Description

mse is a network performance function. It measures the network’s performance according
to the mean of squared errors.

perf = mse(net,t,y,ew) takes these arguments:

net Neural network
t Matrix or cell array of targets
y Matrix or cell array of outputs
ew Error weights (optional)

and returns the mean squared error.

This function has two optional parameters, which are associated with networks whose
net.trainFcn is set to this function:

• 'regularization' can be set to any value between 0 and 1. The greater the
regularization value, the more squared weights and biases are included in the
performance calculation relative to errors. The default is 0, corresponding to no
regularization.

• 'normalization' can be set to 'none' (the default); 'standard', which
normalizes errors between -2 and 2, corresponding to normalizing outputs and targets
between -1 and 1; and 'percent', which normalizes errors between -1 and 1. This
feature is useful for networks with multi-element outputs. It ensures that the relative
accuracy of output elements with differing target value ranges are treated as equally
important, instead of prioritizing the relative accuracy of the output element with the
largest target value range.
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You can create a standard network that uses mse with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with mse, set
net.performFcn to 'mse'. This automatically sets net.performParam to a structure
with the default optional parameter values.

Examples

Train Neural Network Using mse Performance Function

This example shows shows how to train a neural network using the mse performance
function.

Here a two-layer feedforward network is created and trained to estimate body fat
percentage using the mse performance function and a regularization value of 0.01.

[x, t] = bodyfat_dataset;

net = feedforwardnet(10);

net.performParam.regularization = 0.01;

MSE is the default performance function for feedforwardnet.

net.performFcn

ans =

    'mse'

Train the network and evaluate performance.

net = train(net, x, t);

y = net(x);

perf = perform(net, t, y)

perf =

   20.7769

Alternatively, you can call mse directly.
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perf = mse(net, t, y, 'regularization', 0.01)

perf =

   20.7769

See Also
mae

Introduced before R2006a
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narnet
Nonlinear autoregressive neural network

Syntax

narnet(feedbackDelays,hiddenSizes,trainFcn)

Description

NAR (nonlinear autoregressive) neural networks can be trained to predict a time series
from that series past values.

narnet(feedbackDelays,hiddenSizes,trainFcn) takes these arguments,

feedbackDelays Row vector of increasing 0 or positive delays (default =
1:2)

hiddenSizes Row vector of one or more hidden layer sizes (default =
10)

trainFcn Training function (default = 'trainlm')

and returns a NAR neural network.

Examples

Nonlinear Autoregressive Neural Network

Here a NAR network is used to solve a simple time series problem.

T = simplenar_dataset;

net = narnet(1:2,10);

[Xs,Xi,Ai,Ts] = preparets(net,{},{},T);

net = train(net,Xs,Ts,Xi,Ai);

view(net)

Y = net(Xs,Xi);
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perf = perform(net,Ts,Y)

perf =

   1.0100e-09

See Also
preparets | removedelay | timedelaynet | narnet | narxnet

Introduced in R2010b
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narxnet

Nonlinear autoregressive neural network with external input

Syntax

narxnet(inputDelays,feedbackDelays,hiddenSizes,trainFcn)

Description

NARX (Nonlinear autoregressive with external input) networks can learn to predict one
time series given past values of the same time series, the feedback input, and another
time series, called the external or exogenous time series.

narxnet(inputDelays,feedbackDelays,hiddenSizes,trainFcn) takes these
arguments,

inputDelays Row vector of increasing 0 or positive delays (default =
1:2)

feedbackDelays Row vector of increasing 0 or positive delays (default =
1:2)

hiddenSizes Row vector of one or more hidden layer sizes (default =
10)

trainFcn Training function (default = 'trainlm')

and returns a NARX neural network.

Examples

Use NARX Network For Time Series Problem

Here a NARX neural network is used to solve a simple time series problem.
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[X,T] = simpleseries_dataset;

net = narxnet(1:2,1:2,10);

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

net = train(net,Xs,Ts,Xi,Ai);

view(net)

Y = net(Xs,Xi,Ai);

perf = perform(net,Ts,Y)

perf =

    0.0192

Here the NARX network is simulated in closed loop form.

netc = closeloop(net);

view(netc)

[Xs,Xi,Ai,Ts] = preparets(netc,X,{},T);

y = netc(Xs,Xi,Ai);
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Here the NARX network is used to predict the next output, a timestep ahead of when it
will actually appear.

netp = removedelay(net);

view(netp)

[Xs,Xi,Ai,Ts] = preparets(netp,X,{},T);

y = netp(Xs,Xi,Ai);

See Also
closeloop | narnet | openloop | preparets | removedelay | timedelaynet
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Introduced in R2010b
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nctool
Neural network classification or clustering tool

Syntax

nctool

Description

nctool opens the neural network clustering GUI.

For more information and an example of its usage, see “Cluster Data with a Self-
Organizing Map”.

Algorithms

nctool leads you through solving a clustering problem using a self-organizing map. The
map forms a compressed representation of the inputs space, reflecting both the relative
density of input vectors in that space, and a two-dimensional compressed representation
of the input-space topology.

See Also
nftool | nprtool | ntstool

Introduced in R2008a
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negdist
Negative distance weight function

Syntax

Z = negdist(W,P)

dim = negdist('size',S,R,FP)

dw = negdist('dz_dw',W,P,Z,FP)

Description

negdist is a weight function. Weight functions apply weights to an input to get
weighted inputs.

Z = negdist(W,P) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors
FP Row cell array of function parameters (optional, ignored)

and returns the S-by-Q matrix of negative vector distances.

dim = negdist('size',S,R,FP) takes the layer dimension S, input dimension R, and
function parameters, and returns the weight size [S-by-R].

dw = negdist('dz_dw',W,P,Z,FP) returns the derivative of Z with respect to W.

Examples

Here you define a random weight matrix W and input vector P and calculate the
corresponding weighted input Z.

W = rand(4,3);

P = rand(3,1);

Z = negdist(W,P)
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Network Use

You can create a standard network that uses negdist by calling competlayer or
selforgmap.

To change a network so an input weight uses negdist, set
net.inputWeights{i,j}.weightFcn to 'negdist'. For a layer weight, set
net.layerWeights{i,j}.weightFcn to 'negdist'.

In either case, call sim to simulate the network with negdist.

Algorithms

negdist returns the negative Euclidean distance:

z = -sqrt(sum(w-p)^2)

See Also
competlayer | sim | dist | dotprod | selforgmap

Introduced before R2006a
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netinv
Inverse transfer function

Syntax
A = netinv(N,FP)

Description
netinv is a transfer function. Transfer functions calculate a layer’s output from its net
input.

A = netinv(N,FP) takes inputs

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns 1/N.

info = netinv('code') returns information about this function. The following codes
are supported:

netinv('name') returns the name of this function.

netinv('output',FP) returns the [min max] output range.

netinv('active',FP) returns the [min max] active input range.

netinv('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-
by-Q.

netinv('fpnames') returns the names of the function parameters.

netinv('fpdefaults') returns the default function parameters.

Examples
Here you define 10 five-element net input vectors N and calculate A.
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n = rand(5,10);

a = netinv(n);

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'netinv';

See Also
tansig | logsig

Introduced in R2006a
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netprod
Product net input function

Syntax

N = netprod({Z1,Z2,...,Zn})

info = netprod('code')

Description

netprod is a net input function. Net input functions calculate a layer’s net input by
combining its weighted inputs and biases.

N = netprod({Z1,Z2,...,Zn}) takes

Zi S-by-Q matrices in a row cell array

and returns an element-wise product of Z1 to Zn.

info = netprod('code') returns information about this function. The following codes
are supported:

'deriv' Name of derivative function
'fullderiv' Full N-by-S-by-Q derivative = 1, element-wise S-by-Q

derivative = 0
'name' Full name
'fpnames' Returns names of function parameters
'fpdefaults' Returns default function parameters

Examples

Here netprod combines two sets of weighted input vectors (user-defined).

Z1 = [1 2 4;3 4 1];
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Z2 = [-1 2 2; -5 -6 1];

Z = {Z1,Z2};

N = netprod({Z})

Here netprod combines the same weighted inputs with a bias vector. Because Z1 and Z2
each contain three concurrent vectors, three concurrent copies of B must be created with
concur so that all sizes match.

B = [0; -1];

Z = {Z1, Z2, concur(B,3)};

N = netprod(Z)

Network Use

You can create a standard network that uses netprod by calling newpnn or newgrnn.

To change a network so that a layer uses netprod, set net.layers{i}.netInputFcn
to 'netprod'.

In either case, call sim to simulate the network with netprod. See newpnn or newgrnn
for simulation examples.

See Also
sim | netsum | concur

Introduced before R2006a
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netsum

Sum net input function

Syntax

N = netsum({Z1,Z2,...,Zn},FP)

info = netsum('code')

Description

netsum is a net input function. Net input functions calculate a layer’s net input by
combining its weighted inputs and biases.

N = netsum({Z1,Z2,...,Zn},FP) takes Z1 to Zn and optional function parameters,

Zi S-by-Q matrices in a row cell array
FP Row cell array of function parameters (ignored)

and returns the elementwise sum of Z1 to Zn.

info = netsum('code') returns information about this function. The following codes
are supported:

netsum('name') returns the name of this function.

netsum('type') returns the type of this function.

netsum('fpnames') returns the names of the function parameters.

netsum('fpdefaults') returns default function parameter values.

netsum('fpcheck', FP) throws an error for illegal function parameters.

netsum('fullderiv') returns 0 or 1, depending on whether the derivative is S-by-Q or
N-by-S-by-Q.
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Examples

Here netsum combines two sets of weighted input vectors and a bias. You must use
concur to make b the same dimensions as z1 and z2.

z1 = [1, 2, 4; 3, 4, 1]

z2 = [-1, 2, 2; -5, -6, 1]

b = [0; -1]

n = netsum({z1, z2, concur(b, 3)})

Assign this net input function to the first layer of a network.

net = feedforwardnet(); 

net.layers{1}.netInputFcn = 'netsum';

See Also
cascadeforwardnet | netprod | netinv | feedforwardnet

Introduced before R2006a

1-228



 network

network

Create custom neural network

Syntax

net = network

net =

network(numInputs,numLayers,biasConnect,inputConnect,layerConnect,outputConnect)

To Get Help

Type help network/network.

Description

network creates new custom networks. It is used to create networks that are then
customized by functions such as feedforwardnet and narxnet.

net = network without arguments returns a new neural network with no inputs,
layers or outputs.

net =

network(numInputs,numLayers,biasConnect,inputConnect,layerConnect,outputConnect)

takes these optional arguments (shown with default values):

numInputs Number of inputs, 0
numLayers Number of layers, 0
biasConnect numLayers-by-1 Boolean vector, zeros
inputConnect numLayers-by-numInputs Boolean matrix, zeros
layerConnect numLayers-by-numLayers Boolean matrix, zeros
outputConnect 1-by-numLayers Boolean vector, zeros
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and returns

net New network with the given property values

Properties

Architecture Properties

net.numInputs 0 or a positive
integer

Number of inputs.

net.numLayers 0 or a positive
integer

Number of layers.

net.biasConnect numLayer-by-1
Boolean vector

If net.biasConnect(i) is 1, then layer
i has a bias, and net.biases{i} is a
structure describing that bias.

net.inputConnect numLayer-
by-numInputs
Boolean vector

If net.inputConnect(i,j) is 1, then
layer i has a weight coming from input
j, and net.inputWeights{i,j} is a
structure describing that weight.

net.layerConnect numLayer-
by-numLayers
Boolean vector

If net.layerConnect(i,j) is 1, then
layer i has a weight coming from layer
j, and net.layerWeights{i,j} is a
structure describing that weight.

net.numInputs 0 or a positive
integer

Number of inputs.

net.numLayers 0 or a positive
integer

Number of layers.

net.biasConnect numLayer-by-1
Boolean vector

If net.biasConnect(i) is 1, then layer
i has a bias, and net.biases{i} is a
structure describing that bias.

net.inputConnect numLayer-
by-numInputs
Boolean vector

If net.inputConnect(i,j) is 1, then
layer i has a weight coming from input
j, and net.inputWeights{i,j} is a
structure describing that weight.
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net.layerConnect numLayer-
by-numLayers
Boolean vector

If net.layerConnect(i,j) is 1, then
layer i has a weight coming from layer
j, and net.layerWeights{i,j} is a
structure describing that weight.

net.outputConnect 1-by-numLayers
Boolean vector

If net.outputConnect(i) is 1, then
the network has an output from layer
i, and net.outputs{i} is a structure
describing that output.

net.numOutputs 0 or a positive
integer (read only)

Number of network outputs according to
net.outputConnect.

net.numInputDelays 0 or a positive
integer (read only)

Maximum input delay according to all
net.inputWeights{i,j}.delays.

net.numLayerDelays 0 or a positive
number (read only)

Maximum layer delay according to all
net.layerWeights{i,j}.delays.

Subobject Structure Properties

net.inputs numInputs-by-1
cell array

net.inputs{i} is a structure defining
input i.

net.layers numLayers-by-1
cell array

net.layers{i} is a structure defining
layer i.

net.biases numLayers-by-1
cell array

If net.biasConnect(i) is 1, then
net.biases{i} is a structure defining
the bias for layer i.

net.inputWeights numLayers-
by-numInputs
cell array

If net.inputConnect(i,j) is 1, then
net.inputWeights{i,j} is a structure
defining the weight to layer i from input
j.

net.layerWeights numLayers-
by-numLayers
cell array

If net.layerConnect(i,j) is 1, then
net.layerWeights{i,j} is a structure
defining the weight to layer i from layer
j.

net.outputs 1-by-numLayers
cell array

If net.outputConnect(i) is 1, then
net.outputs{i} is a structure defining
the network output from layer i.
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Function Properties

net.adaptFcn Name of a network adaption function or ''
net.initFcn Name of a network initialization function

or ''
net.performFcn Name of a network performance function or

''

net.trainFcn Name of a network training function or ''

Parameter Properties

net.adaptParam Network adaption parameters
net.initParam Network initialization parameters
net.performParam Network performance parameters
net.trainParam Network training parameters

Weight and Bias Value Properties

net.IW numLayers-by-numInputs cell array of
input weight values

net.LW numLayers-by-numLayers cell array of
layer weight values

net.b numLayers-by-1 cell array of bias values

Other Properties

net.userdata Structure you can use to store useful values

Examples

Create Network with One Input and Two Layers

This example shows how to create a network without any inputs and layers, and then set
its numbers of inputs and layers to 1 and 2 respectively.
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net = network

net.numInputs = 1

net.numLayers = 2

Alternatively, you can create the same network with one line of code.

net = network(1,2)

Create Feedforward Network and View Properties

This example shows how to create a one-input, two-layer, feedforward network. Only the
first layer has a bias. An input weight connects to layer 1 from input 1. A layer weight
connects to layer 2 from layer 1. Layer 2 is a network output and has a target.

net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1])

You can view the the network subobjects with the following code.

net.inputs{1}

net.layers{1}, net.layers{2}

net.biases{1}

net.inputWeights{1,1}, net.layerWeights{2,1}

net.outputs{2}

You can alter the properties of any of the network subobjects. This code changes the
transfer functions of both layers:

net.layers{1}.transferFcn = 'tansig';

net.layers{2}.transferFcn = 'logsig';

You can view the weights for the connection from the first input to the first layer as
follows. The weights for a connection from an input to a layer are stored in net.IW. If the
values are not yet set, these result is empty.

net.IW{1,1}

You can view the weights for the connection from the first layer to the second layer as
follows. Weights for a connection from a layer to a layer are stored in net.LW. Again, if
the values are not yet set, the result is empty.

net.LW{2,1}

You can view the bias values for the first layer as follows.
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net.b{1}

To change the number of elements in input 1 to 2, set each element’s range:

net.inputs{1}.range = [0 1; -1 1];

To simulate the network for a two-element input vector, the code might look like this:

p = [0.5; -0.1];

y = sim(net,p)

See Also

See Also
sim

Topics
“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced before R2006a
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newgrnn
Design generalized regression neural network

Syntax

net = newgrnn(P,T,spread)

Description

Generalized regression neural networks (grnns) are a kind of radial basis network that is
often used for function approximation. grnns can be designed very quickly.

net = newgrnn(P,T,spread) takes three inputs,

P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
spread Spread of radial basis functions (default = 1.0)

and returns a new generalized regression neural network.

The larger the spread, the smoother the function approximation. To fit data very closely,
use a spread smaller than the typical distance between input vectors. To fit the data
more smoothly, use a larger spread.

Properties

newgrnn creates a two-layer network. The first layer has radbas neurons, and
calculates weighted inputs with dist and net input with netprod. The second layer
has purelin neurons, calculates weighted input with normprod, and net inputs with
netsum. Only the first layer has biases.

newgrnn sets the first layer weights to P', and the first layer biases are all set to
0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted inputs of
+/– spread. The second layer weights W2 are set to T.
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Examples

Here you design a radial basis network, given inputs P and targets T.

P = [1 2 3];

T = [2.0 4.1 5.9];

net = newgrnn(P,T);

The network is simulated for a new input.

P = 1.5;

Y = sim(net,P)

References

Wasserman, P.D., Advanced Methods in Neural Computing, New York, Van Nostrand
Reinhold, 1993, pp. 155–61

See Also
sim | newrb | newrbe | newpnn

Introduced before R2006a
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newlind
Design linear layer

Syntax

net = newlind(P,T,Pi)

Description

net = newlind(P,T,Pi) takes these input arguments,

P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
Pi 1-by-ID cell array of initial input delay states

where each element Pi{i,k} is an Ri-by-Q matrix, and the default = []; and returns a
linear layer designed to output T (with minimum sum square error) given input P.

newlind(P,T,Pi) can also solve for linear networks with input delays and multiple
inputs and layers by supplying input and target data in cell array form:

P Ni-by-TS cell array Each element P{i,ts} is an Ri-by-Q input
matrix

T Nt-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix
Pi Ni-by-ID cell array Each element Pi{i,k} is an Ri-by-Q matrix,

default = []

and returns a linear network with ID input delays, Ni network inputs, and Nl layers,
designed to output T (with minimum sum square error) given input P.

Examples

You want a linear layer that outputs T given P for the following definitions:
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P = [1 2 3];

T = [2.0 4.1 5.9];

Use newlind to design such a network and check its response.

net = newlind(P,T);

Y = sim(net,P)

You want another linear layer that outputs the sequence T given the sequence P and two
initial input delay states Pi.

P = {1 2 1 3 3 2};

Pi = {1 3};

T = {5.0 6.1 4.0 6.0 6.9 8.0};

net = newlind(P,T,Pi);

Y = sim(net,P,Pi)

You want a linear network with two outputs Y1 and Y2 that generate sequences T1 and
T2, given the sequences P1 and P2, with three initial input delay states Pi1 for input 1
and three initial delays states Pi2 for input 2.

P1 = {1 2 1 3 3 2}; Pi1 = {1 3 0};

P2 = {1 2 1 1 2 1}; Pi2 = {2 1 2};

T1 = {5.0 6.1 4.0 6.0 6.9 8.0};

T2 = {11.0 12.1 10.1 10.9 13.0 13.0};

net = newlind([P1; P2],[T1; T2],[Pi1; Pi2]);

Y = sim(net,[P1; P2],[Pi1; Pi2]);

Y1 = Y(1,:)

Y2 = Y(2,:)

Algorithms

newlind calculates weight W and bias B values for a linear layer from inputs P and
targets T by solving this linear equation in the least squares sense:

[W b] * [P; ones] = T

See Also
sim

Introduced before R2006a
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newpnn
Design probabilistic neural network

Syntax

net = newpnn(P,T,spread)

Description

Probabilistic neural networks (PNN) are a kind of radial basis network suitable for
classification problems.

net = newpnn(P,T,spread) takes two or three arguments,

P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
spread Spread of radial basis functions (default = 0.1)

and returns a new probabilistic neural network.

If spread is near zero, the network acts as a nearest neighbor classifier. As spread
becomes larger, the designed network takes into account several nearby design vectors.

Examples

Here a classification problem is defined with a set of inputs P and class indices Tc.

P = [1 2 3 4 5 6 7];

Tc = [1 2 3 2 2 3 1];

The class indices are converted to target vectors, and a PNN is designed and tested.

T = ind2vec(Tc)

net = newpnn(P,T);

Y = sim(net,P)
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Yc = vec2ind(Y)

Algorithms

newpnn creates a two-layer network. The first layer has radbas neurons, and calculates
its weighted inputs with dist and its net input with netprod. The second layer has
compet neurons, and calculates its weighted input with dotprod and its net inputs with
netsum. Only the first layer has biases.

newpnn sets the first-layer weights to P', and the first-layer biases are all set to
0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted inputs of
+/– spread. The second-layer weights W2 are set to T.

References

Wasserman, P.D., Advanced Methods in Neural Computing, New York, Van Nostrand
Reinhold, 1993, pp. 35–55

See Also
sim | ind2vec | vec2ind | newrb | newrbe | newgrnn

Introduced before R2006a
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newrb
Design radial basis network

Syntax

net = newrb(P,T,goal,spread,MN,DF)

Description

Radial basis networks can be used to approximate functions. newrb adds neurons to the
hidden layer of a radial basis network until it meets the specified mean squared error
goal.

net = newrb(P,T,goal,spread,MN,DF) takes two of these arguments,

P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
goal Mean squared error goal (default = 0.0)
spread Spread of radial basis functions (default = 1.0)
MN Maximum number of neurons (default is Q)
DF Number of neurons to add between displays (default = 25)

and returns a new radial basis network.

The larger spread is, the smoother the function approximation. Too large a spread
means a lot of neurons are required to fit a fast-changing function. Too small a spread
means many neurons are required to fit a smooth function, and the network might not
generalize well. Call newrb with different spreads to find the best value for a given
problem.

Examples

Here you design a radial basis network, given inputs P and targets T.
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P = [1 2 3];

T = [2.0 4.1 5.9];

net = newrb(P,T);

The network is simulated for a new input.

P = 1.5;

Y = sim(net,P)

Algorithms

newrb creates a two-layer network. The first layer has radbas neurons, and calculates
its weighted inputs with dist and its net input with netprod. The second layer has
purelin neurons, and calculates its weighted input with dotprod and its net inputs
with netsum. Both layers have biases.

Initially the radbas layer has no neurons. The following steps are repeated until the
network’s mean squared error falls below goal.

1 The network is simulated.
2 The input vector with the greatest error is found.
3 A radbas neuron is added with weights equal to that vector.
4 The purelin layer weights are redesigned to minimize error.

See Also
sim | newrbe | newgrnn | newpnn

Introduced before R2006a
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newrbe
Design exact radial basis network

Syntax

net = newrbe(P,T,spread)

Description

Radial basis networks can be used to approximate functions. newrbe very quickly
designs a radial basis network with zero error on the design vectors.

net = newrbe(P,T,spread) takes two or three arguments,

P RxQ matrix of Q R-element input vectors
T SxQ matrix of Q S-element target class vectors
spread Spread of radial basis functions (default = 1.0)

and returns a new exact radial basis network.

The larger the spread is, the smoother the function approximation will be. Too large a
spread can cause numerical problems.

Examples

Here you design a radial basis network given inputs P and targets T.

P = [1 2 3];

T = [2.0 4.1 5.9];

net = newrbe(P,T);

The network is simulated for a new input.

P = 1.5;

Y = sim(net,P)
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Algorithms

newrbe creates a two-layer network. The first layer has radbas neurons, and calculates
its weighted inputs with dist and its net input with netprod. The second layer has
purelin neurons, and calculates its weighted input with dotprod and its net inputs
with netsum. Both layers have biases.

newrbe sets the first-layer weights to P', and the first-layer biases are all set to
0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted inputs of
+/– spread.

The second-layer weights IW{2,1} and biases b{2} are found by simulating the first-
layer outputs A{1} and then solving the following linear expression:

[W{2,1} b{2}] * [A{1}; ones] = T

See Also
sim | newrb | newgrnn | newpnn

Introduced before R2006a
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nftool
Neural network fitting tool

Syntax

nftool

Description

nftool opens the neural network fitting tool GUI.

For more information and an example of its usage, see “Fit Data with a Neural Network”.

Algorithms

nftool leads you through solving a data fitting problem, solving it with a two-layer feed-
forward network trained with Levenberg-Marquardt.

See Also
nctool | nprtool | ntstool

Introduced in R2006a
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nncell2mat
Combine neural network cell data into matrix

Syntax

[y,i,j] nncell2mat(x)

Description

[y,i,j] nncell2mat(x) takes a cell array of matrices and returns,

y Cell array formed by concatenating matrices
i Array of row sizes
ji Array of column sizes

The row and column sizes returned by nncell2mat can be used to convert the returned
matrix back into a cell of matrices with mat2cell.

Examples

Here neural network data is converted to a matrix and back.

c = {rands(2,3) rands(2,3); rands(5,3) rands(5,3)};

[m,i,j] = nncell2mat(c)

c3 = mat2cell(m,i,j)

See Also
nndata | nnsize

Introduced in R2010b
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nncorr

Crross correlation between neural network time series

Syntax

nncorr(a,b,maxlag,'flag')

Description

nncorr(a,b,maxlag,'flag') takes these arguments,

a Matrix or cell array, with columns interpreted as timesteps,
and having a total number of matrix rows of N.

b Matrix or cell array, with columns interpreted as timesteps,
and having a total number of matrix rows of M.

maxlag Maximum number of time lags
flag Type of normalization (default = 'none')

and returns an N-by-M cell array where each {i,j} element is a 2*maxlag+1 length row
vector formed from the correlations of a elements (i.e., matrix row) i and b elements (i.e.,
matrix column) j.

If a and b are specified with row vectors, the result is returned in matrix form.

The options for the normalization flag are:

• 'biased' — scales the raw cross-correlation by 1/N.
• 'unbiased' — scales the raw correlation by 1/(N-abs(k)), where k is the index

into the result.
• 'coeff' — normalizes the sequence so that the correlations at zero lag are 1.0.
• 'none' — no scaling. This is the default.

1-247



1 Functions — Alphabetical List

Examples

Here the autocorrelation of a random 1-element, 1-sample, 20-timestep signal is
calculated with a maximum lag of 10.

a = nndata(1,1,20)

aa = nncorr(a,a,10)

Here the cross-correlation of the first signal with another random 2-element signal are
found, with a maximum lag of 8.

b = nndata(2,1,20)

ab = nncorr(a,b,8)

See Also
confusion | regression

Introduced in R2010b
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nndata
Create neural network data

Syntax

nndata(N,Q,TS,v)

Description

nndata(N,Q,TS,v) takes these arguments,

N Vector of M element sizes
Q Number of samples
TS Number of timesteps
v Scalar value

and returns an M-by-TS cell array where each row i has N(i)-by-Q sized matrices of
value v. If v is not specified, random values are returned.

You can access subsets of neural network data with getelements, getsamples,
gettimesteps, and getsignals.

You can set subsets of neural network data with setelements, setsamples,
settimesteps, and setsignals.

You can concatenate subsets of neural network data with catelements, catsamples,
cattimesteps, and catsignals.

Examples

Here four samples of five timesteps, for a 2-element signal consisting of zero values is
created:

x = nndata(2,4,5,0)
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To create random data with the same dimensions:

x = nndata(2,4,5)

Here static (1 timestep) data of 12 samples of 4 elements is created.

x = nndata(4,12)

See Also
nnsize | tonndata | fromnndata | nndata2sim | sim2nndata

Introduced in R2010b
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nndata2gpu
Format neural data for efficient GPU training or simulation

Syntax

nndata2gpu(x)

[Y,Q,N,TS] = nndata2gpu(X)

nndata2gpu(X,PRECISION)

Description

nndata2gpu requires Parallel Computing Toolbox™.

nndata2gpu(x) takes an N-by-Q matrix X of Q N-element column vectors, and returns it
in a form for neural network training and simulation on the current GPU device.

The N-by-Q matrix becomes a QQ-by-N gpuArray where QQ is Q rounded up to the next
multiple of 32. The extra rows (Q+1):QQ are filled with NaN values. The gpuArray has
the same precision ('single' or 'double') as X.

[Y,Q,N,TS] = nndata2gpu(X) can also take an M-by-TS cell array of M signals over
TS time steps. Each element of X{i,ts} should be an Ni-by-Q matrix of Q Ni-element
vectors, representing the ith signal vector at time step ts, across all Q time series. In
this case, the gpuArray Y returned is QQ-by-(sum(Ni)*TS). Dimensions Ni, Q, and
TS are also returned so they can be used with gpu2nndata to perform the reverse
formatting.

nndata2gpu(X,PRECISION) specifies the default precision of the gpuArray, which can
be 'double' or 'single'.

Examples

Copy a matrix to the GPU and back:

x = rand(5,6)

[y,q] = nndata2gpu(x)
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x2 = gpu2nndata(y,q)

Copy neural network cell array data, representing four time series, each consisting of five
time steps of 2-element and 3-element signals:

x = nndata([2;3],4,5)

[y,q,n,ts] = nndata2gpu(x)

x2 = gpu2nndata(y,q,n,ts)

See Also
gpu2nndata

Introduced in R2012b
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nndata2sim
Convert neural network data to Simulink time series

Syntax

nndata2sim(x,i,q)

Description

nndata2sim(x,i,q) takes these arguments,

x Neural network data
i Index of signal (default = 1)
q Index of sample (default = 1)

and returns time series q of signal i as a Simulink time series structure.

Examples

Here random neural network data is created with two signals having 4 and 3 elements
respectively, over 10 timesteps. Three such series are created.

x = nndata([4;3],3,10);

Now the second signal of the first series is converted to Simulink form.

y_2_1 = nndata2sim(x,2,1)

See Also
nndata | sim2nndata | nnsize

Introduced in R2010b
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nnsize

Number of neural data elements, samples, timesteps, and signals

Syntax

[N,Q,TS,M] = nnsize(X)

Description

[N,Q,TS,M] = nnsize(X) takes neural network data x and returns,

N Vector containing the number of element sizes for each of M signals
Q Number of samples
TS Number of timesteps
M Number of signals

If X is a matrix, N is the number of rows of X, Q is the number of columns, and both TS
and M are 1.

If X is a cell array, N is an Sx1 vector, where M is the number of rows in X, and N(i) is
the number of rows in X{i,1}. Q is the number of columns in the matrices in X.

Examples

This code gets the dimensions of matrix data:

x = [1 2 3; 4 7 4]

[n,q,ts,s] = nnsize(x)

This code gets the dimensions of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

[n,q,ts,s] = nnsize(x)
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See Also
nndata | numelements | numsamples | numsignals | numtimesteps

Introduced in R2010b
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nnstart
Neural network getting started GUI

Syntax

nnstart

Description

nnstart opens a window with launch buttons for neural network fitting, pattern
recognition, clustering and time series tools. It also provides links to lists of data sets,
examples, and other useful information for getting started. See specific topics on “Getting
Started with Neural Network Toolbox”.

See Also
nctool | nftool | nprtool | ntstool

Introduced in R2010b
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nntool
Open Network/Data Manager

Syntax

nntool

Description

nntool opens the Network/Data Manager window, which allows you to import, create,
use, and export neural networks and data.

Note Although it is still available, nntool is no longer recommended. Instead, use
nnstart, which provides graphical interfaces that allow you to design and deploy fitting,
pattern recognition, clustering, and time-series neural networks.

See Also
nnstart

Introduced before R2006a

1-257



1 Functions — Alphabetical List

nntraintool
Neural network training tool

Syntax

nntraintool

nntraintool close

nntraintool('close')

Description

nntraintool opens the neural network training GUI.

This function can be called to make the training GUI visible before training has occurred,
after training if the window has been closed, or just to bring the training GUI to the
front.

Network training functions handle all activity within the training window.

To access additional useful plots, related to the current or last network trained, during or
after training, click their respective buttons in the training window.

nntraintool close or nntraintool('close') closes the training window.

Introduced in R2008a
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noloop
Remove neural network open- and closed-loop feedback

Syntax

net = noloop(net)

Description

net = noloop(net) takes a neural network and returns the network with open- and
closed-loop feedback removed.

For outputs i, where net.outputs{i}.feedbackMode is 'open', the feedback mode
is set to 'none', outputs{i}.feedbackInput is set to the empty matrix, and the
associated network input is deleted.

For outputs i, where net.outputs{i}.feedbackMode is 'closed', the feedback
mode is set to 'none'.

Examples

Here a NARX network is designed. The NARX network has a standard input and an
open-loop feedback output to an associated feedback input.

[X,T] = simplenarx_dataset;

net = narxnet(1:2,1:2,20);

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

net = train(net,Xs,Ts,Xi,Ai);

view(net)

Y = net(Xs,Xi,Ai)

Now the network is converted to no loop form. The output and second input are no longer
associated.

net = noloop(net);

view(net)
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[Xs,Xi,Ai] = preparets(net,X,T);

Y = net(Xs,Xi,Ai)

See Also
closeloop | openloop

Introduced in R2010b
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normc
Normalize columns of matrix

Syntax

normc(M)

Description

normc(M) normalizes the columns of M to a length of 1.

Examples
m = [1 2; 3 4];

normc(m)

ans =

     0.3162     0.4472

     0.9487     0.8944

See Also
normr

Introduced before R2006a
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normprod
Normalized dot product weight function

Syntax

Z = normprod(W,P,FP)

dim = normprod('size',S,R,FP)

dw = normprod('dz_dw',W,P,Z,FP)

Description

normprod is a weight function. Weight functions apply weights to an input to get
weighted inputs.

Z = normprod(W,P,FP) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors
FP Row cell array of function parameters (optional, ignored)

and returns the S-by-Q matrix of normalized dot products.

dim = normprod('size',S,R,FP) takes the layer dimension S, input dimension R,
and function parameters, and returns the weight size [S-by-R].

dw = normprod('dz_dw',W,P,Z,FP) returns the derivative of Z with respect to W.

Examples

Here you define a random weight matrix W and input vector P and calculate the
corresponding weighted input Z.

W = rand(4,3);

P = rand(3,1);

Z = normprod(W,P)
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Network Use

You can create a standard network that uses normprod by calling newgrnn.

To change a network so an input weight uses normprod, set
net.inputWeights{i,j}.weightFcn to 'normprod'. For a layer weight, set
net.layerWeights{i,j}.weightFcn to 'normprod'.

In either case, call sim to simulate the network with normprod. See newgrnn for
simulation examples.

Algorithms

normprod returns the dot product normalized by the sum of the input vector elements.

z = w*p/sum(p)

See Also
dotprod

Introduced before R2006a
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normr
Normalize rows of matrix

Syntax

normr(M)

Description

normr(M) normalizes the rows of M to a length of 1.

Examples
m = [1 2; 3 4];

normr(m)

ans =

      0.4472     0.8944

      0.6000     0.8000

See Also
normc

Introduced before R2006a
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nprtool
Neural network pattern recognition tool

Syntax

nprtool

Description

nprtool opens the neural network pattern recognition tool.

For more information and an example of its usage, see “Classify Patterns with a Neural
Network”.

Algorithms

nprtool leads you through solving a pattern-recognition classification problem using a
two-layer feed-forward patternnet network with sigmoid output neurons.

See Also
nctool | nftool | ntstool

Introduced in R2008a
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ntstool
Neural network time series tool

Syntax

ntstool

ntstool('close')

Description

ntstool opens the neural network time series tool and leads you through solving a
fitting problem using a two-layer feed-forward network.

For more information and an example of its usage, see “Neural Network Time-Series
Prediction and Modeling”.

ntstool('close') closes the tool.

See Also
nctool | nftool | nprtool

Introduced in R2010b
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num2deriv
Numeric two-point network derivative function

Syntax

num2deriv('dperf_dwb',net,X,T,Xi,Ai,EW)

num2deriv('de_dwb',net,X,T,Xi,Ai,EW)

Description

This function calculates derivatives using the two-point numeric derivative rule.

dy

dx

y x dx y x

dx
=

+ -( ) ( )

This function is much slower than the analytical (non-numerical) derivative functions,
but is provided as a means of checking the analytical derivative functions. The other
numerical function, num5deriv, is slower but more accurate.

num2deriv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and
biases, where R and S are the number of input and output elements and Q is the number
of samples (and N and M are the number of input and output signals, Ri and Si are the
number of each input and outputs elements, and TS is the number of timesteps).

num2deriv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with
respect to the network’s weights and biases.
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Examples

Here a feedforward network is trained and both the gradient and Jacobian are
calculated.

[x,t] = simplefit_dataset;

net = feedforwardnet(20);

net = train(net,x,t);

y = net(x);

perf = perform(net,t,y);

dwb = num2deriv('dperf_dwb',net,x,t)

See Also
bttderiv | defaultderiv | fpderiv | num5deriv | staticderiv

Introduced in R2010b
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num5deriv

Numeric five-point stencil neural network derivative function

Syntax

num5deriv('dperf_dwb',net,X,T,Xi,Ai,EW)

num5deriv('de_dwb',net,X,T,Xi,Ai,EW)

Description

This function calculates derivatives using the five-point numeric derivative rule.
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This function is much slower than the analytical (non-numerical) derivative functions,
but is provided as a means of checking the analytical derivative functions. The other
numerical function, num2deriv, is faster but less accurate.

num5deriv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

1-269



1 Functions — Alphabetical List

and returns the gradient of performance with respect to the network’s weights and
biases, where R and S are the number of input and output elements and Q is the number
of samples (and N and M are the number of input and output signals, Ri and Si are the
number of each input and outputs elements, and TS is the number of timesteps).

num5deriv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with
respect to the network’s weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are
calculated.

[x,t] = simplefit_dataset;

net = feedforwardnet(20);

net = train(net,x,t);

y = net(x);

perf = perform(net,t,y);

dwb = num5deriv('dperf_dwb',net,x,t)

See Also
bttderiv | defaultderiv | fpderiv | num2deriv | staticderiv

Introduced in R2010b
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numelements
Number of elements in neural network data

Syntax

numelements(x)

Description

numelements(x) takes neural network data x in matrix or cell array form, and returns
the number of elements in each signal.

If x is a matrix the result is the number of rows of x.

If x is a cell array the result is an S-by-1 vector, where S is the number of signals (i.e.,
rows of X), and each element S(i) is the number of elements in each signal i (i.e., rows
of x{i,1}).

Examples

This code calculates the number of elements represented by matrix data:

x = [1 2 3; 4 7 4]

n = numelements(x)

This code calculates the number of elements represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

n = numelements(x)

See Also
nndata | nnsize | getelements | setelements | catelements | numsamples |
numsignals | numtimesteps

Introduced in R2010b
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numfinite
Number of finite values in neural network data

Syntax

numfinite(x)

Description

numfinite(x) takes a matrix or cell array of matrices and returns the number of finite
elements in it.

Examples
x = [1 2; 3 NaN]

n = numfinite(x)

 

x = {[1 2; 3 NaN] [5 NaN; NaN 8]}

n = numfinite(x)

See Also
numnan | nndata | nnsize

Introduced in R2010b
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numnan
Number of NaN values in neural network data

Syntax

numnan(x)

Description

numnan(x) takes a matrix or cell array of matrices and returns the number of NaN
elements in it.

Examples
x = [1 2; 3 NaN]

n = numnan(x)

 

x = {[1 2; 3 NaN] [5 NaN; NaN 8]}

n = numnan(x)

See Also
numnan | nndata | nnsize

Introduced in R2010b
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numsamples
Number of samples in neural network data

Syntax

numsamples(x)

Description

numsamples(x) takes neural network data x in matrix or cell array form, and returns
the number of samples.

If x is a matrix, the result is the number of columns of x.

If x is a cell array, the result is the number of columns of the matrices in x.

Examples

This code calculates the number of samples represented by matrix data:

x = [1 2 3; 4 7 4]

n = numsamples(x)

This code calculates the number of samples represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

n = numsamples(x)

See Also
nndata | nnsize | getsamples | setsamples | catsamples | numelements |
numsignals | numtimesteps

Introduced in R2010b
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numsignals
Number of signals in neural network data

Syntax

numsignals(x)

Description

numsignals(x) takes neural network data x in matrix or cell array form, and returns
the number of signals.

If x is a matrix, the result is 1.

If x is a cell array, the result is the number of rows in x.

Examples

This code calculates the number of signals represented by matrix data:

x = [1 2 3; 4 7 4]

n = numsignals(x)

This code calculates the number of signals represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

n = numsignals(x)

See Also
nndata | nnsize | getsignals | setsignals | catsignals | numelements |
numsamples | numtimesteps

Introduced in R2010b
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numtimesteps
Number of time steps in neural network data

Syntax

numtimesteps(x)

Description

numtimesteps(x) takes neural network data x in matrix or cell array form, and returns
the number of signals.

If x is a matrix, the result is 1.

If x is a cell array, the result is the number of columns in x.

Examples

This code calculates the number of time steps represented by matrix data:

x = [1 2 3; 4 7 4]

n = numtimesteps(x)

This code calculates the number of time steps represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

n = numtimesteps(x)

See Also
nndata | nnsize | gettimesteps | settimesteps | cattimesteps | numelements
| numsamples | numsignals

Introduced in R2010b
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openloop
Convert neural network closed-loop feedback to open loop

Syntax

net = openloop(net)

[net,xi,ai] = openloop(net,xi,ai)

Description

net = openloop(net) takes a neural network and opens any closed-loop feedback. For
each feedback output i whose property net.outputs{i}.feedbackMode is 'closed',
it replaces its associated feedback layer weights with a new input and input weight
connections. The net.outputs{i}.feedbackMode property is set to 'open', and
the net.outputs{i}.feedbackInput property is set to the index of the new input.
Finally, the value of net.outputs{i}.feedbackDelays is subtracted from the delays
of the feedback input weights (i.e., to the delays values of the replaced layer weights).

[net,xi,ai] = openloop(net,xi,ai) converts a closed-loop network and its
current input delay states xi and layer delay states ai to open-loop form.

Examples

Convert NARX Network to Open-Loop Form

Here a NARX network is designed in open-loop form and then converted to closed-loop
form, then converted back.

[X,T] = simplenarx_dataset;

net = narxnet(1:2,1:2,10);

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

net = train(net,Xs,Ts,Xi,Ai);

view(net)

Yopen = net(Xs,Xi,Ai)

net = closeloop(net)
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view(net)

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

Yclosed = net(Xs,Xi,Ai);

net = openloop(net)

view(net)

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

Yopen = net(Xs,Xi,Ai)

Convert Delay States

For examples on using closeloop and openloop to implement multistep prediction, see
narxnet and narnet.

See Also
closeloop | narnet | narxnet | noloop

Introduced in R2010b

1-278



 patternnet

patternnet
Pattern recognition network

Syntax

patternnet(hiddenSizes,trainFcn,performFcn)

Description

Pattern recognition networks are feedforward networks that can be trained to classify
inputs according to target classes. The target data for pattern recognition networks
should consist of vectors of all zero values except for a 1 in element i, where i is the class
they are to represent.

patternnet(hiddenSizes,trainFcn,performFcn) takes these arguments,

hiddenSizes Row vector of one or more hidden layer sizes (default =
10)

trainFcn Training function (default = 'trainscg')
performFcn Performance function (default = 'crossentropy')

and returns a pattern recognition neural network.

Examples

Pattern Recognition

This example shows how to design a pattern recognition network to classify iris flowers.

[x,t] = iris_dataset;

net = patternnet(10);

net = train(net,x,t);

view(net)

y = net(x);
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perf = perform(net,t,y);

classes = vec2ind(y);

See Also

See Also
competlayer | lvqnet | network | nprtool | selforgmap

Topics
“Classify Patterns with a Neural Network”
“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced in R2010b
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perceptron

Perceptron

Syntax

perceptron(hardlimitTF,perceptronLF)

Description

Perceptrons are simple single-layer binary classifiers, which divide the input space with
a linear decision boundary.

Perceptrons can learn to solve a narrow range of classification problems. They were
one of the first neural networks to reliably solve a given class of problem, and their
advantage is a simple learning rule.

perceptron(hardlimitTF,perceptronLF) takes these arguments,

hardlimitTF Hard limit transfer function (default = 'hardlim')
perceptronLF Perceptron learning rule (default = 'learnp')

and returns a perceptron.

In addition to the default hard limit transfer function, perceptrons can be created with
the hardlims transfer function. The other option for the perceptron learning rule is
learnpn.

Note Neural Network Toolbox supports perceptrons for historical interest. For better
results, you should instead use patternnet, which can solve nonlinearly separable
problems. Sometimes the term “perceptrons” refers to feed-forward pattern recognition
networks; but the original perceptron, described here, can solve only simple problems.
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Examples

Solve Simple Classification Problem Using Perceptron

Use a perceptron to solve a simple classification logical-OR problem.

x = [0 0 1 1; 0 1 0 1];

t = [0 1 1 1];

net = perceptron;

net = train(net,x,t);

view(net)

y = net(x);

See Also
preparets | removedelay | patternnet | timedelaynet | narnet | narxnet

Introduced in R2010b
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perform
Calculate network performance

Syntax

perform(net,t,y,ew)

Description

perform(net,t,y,ew) takes these arguments,

net Neural network
t Target data
y Output data
ew Error weights (default = {1})

and returns network performance calculated according to the net.performFcn and
net.performParam property values.

The target and output data must have the same dimensions. The error weights may
be the same dimensions as the targets, in the most general case, but may also have
any of its dimension be 1. This gives the flexibilty of defining error weights across any
dimension desired.

Error weights can be defined by sample, output element, time step, or network output:

ew = [1.0 0.5 0.7 0.2]; % Across 4 samples

ew = [0.1; 0.5; 1.0]; % Across 3 elements

ew = {0.1 0.2 0.3 0.5 1.0}; % Across 5 timesteps

ew = {1.0; 0.5}; % Across 2 outputs

The may also be defined across any combination, such as across two time-series (i.e. two
samples) over four timesteps.

ew = {[0.5 0.4],[0.3 0.5],[1.0 1.0],[0.7 0.5]};
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In the general case, error weights may have exactly the same dimensions as targets, in
which case each target value will have an associated error weight.

The default error weight treats all errors the same.

ew = {1}

Examples

Here a simple fitting problem is solved with a feed-forward network and its performance
calculated.

[x,t] = simplefit_dataset;

net = feedforwardnet(20);

net = train(net,x,t);

y = net(x);

perf = perform(net,t,y)

perf =

   2.3654e-06

See Also
train | configure | init

Introduced in R2010b
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plotconfusion
Plot classification confusion matrix

Syntax

plotconfusion(targets,outputs)

plotconfusion(targets,outputs,name)

plotconfusion(targets1,outputs1,name1,targets2,outputs2,name2,...,targetsn,outputsn,namen)

Description

plotconfusion(targets,outputs) returns a confusion matrix plot for the target and
output data in targets and outputs, respectively.

On the confusion matrix plot, the rows correspond to the predicted class (Output
Class), and the columns show the true class (Target Class). The diagonal cells show
for how many (and what percentage) of the examples the trained network correctly
estimates the classes of observations. That is, it shows what percentage of the true
and predicted classes match. The off diagonal cells show where the classifier has made
mistakes. The column on the far right of the plot shows the accuracy for each predicted
class, while the row at the bottom of the plot shows the accuracy for each true class. The
cell in the bottom right of the plot shows the overall accuracy.

plotconfusion(targets,outputs,name) returns a confusion matrix plot with the
title starting with name.

plotconfusion(targets1,outputs1,name1,targets2,outputs2,name2,...,targetsn,outputsn,namen)

returns several confusion plots in one figure, and prefixes the name arguments to the
titles of the appropriate plots.

Examples

Plot Confusion Matrix

This example shows how to train a pattern recognition network and plot its accuracy.
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Load the sample data.

[x,t] = cancer_dataset;

cancerInputs is a 9x699 matrix defining nine attributes of 699 biopsies.
cancerTargets is a 2x966 matrix where each column indicates a correct category with
a one in either element 1 (benign) or element 2 (malignant). For more information on this
dataset, type help cancer_dataset in the command line.

Create a pattern recognition network and train it using the sample data.

net = patternnet(10);

net = train(net,x,t);

Estimate the cancer status using the trained network, net .

y = net(x);

Plot the confusion matrix.

plotconfusion(t,y)
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In this figure, the first two diagonal cells show the number and percentage of correct
classifications by the trained network. For example 446 biopsies are correctly classifed as
benign. This corresponds to 63.8% of all 699 biopsies. Similarly, 236 cases are correctly
classified as malignant. This corresponds to 33.8% of all biopsies.

5 of the malignant biopsies are incorrectly classified as benign and this corresponds to
0.7% of all 699 biopsies in the data. Similarly, 12 of the benign biopsies are incorrectly
classified as malignant and this corresponds to 1.7% of all data.
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Out of 451 benign predictions, 98.9% are correct and 1.1% are wrong. Out of 248
malignant predictions, 95.2% are correct and 4.8% are wrong. Out of 458 benign cases,
97.4% are correctly predicted as benign and 2.6% are predicted as malignant. Out of 241
malignant cases, 97.9% are correctly classified as malignant and 2.1% are classified as
benign.

Overall, 97.6% of the predictions are correct and 2.4% are wrong classifications.

Input Arguments

targets — True class labels
N-by-M matrix

True class labels, where N is the number of classes and M is the number of examples.
Each column of the matrix must be in the 1-of-N form indicating which class that
particular example belongs to. That is, in each column, a single element is 1 to indicate
the correct class, and all other elements are 0.
Data Types: single | double

outputs — Class estimates from a neural network that performs classification
N-by-M matrix

Class estimates from a neural network that performs classification, specified as an
N-by-M matrix, where N is the number of classes and M is the number of examples.
Each column of the matrix can either be in the 1-of-N form indicating which class that
particular example belongs to, or can contain the probabilities, where each column sums
to 1.
Data Types: single | double

name — Name of the confusion matrix
character array

Name of the confusion matrix, specified as a character array. The specified name prefixes
the confusion matrix plot title as name Confusion Matrix.

Data Types: char
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See Also

See Also
plotroc

Introduced in R2008a
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plotep
Plot weight-bias position on error surface

Syntax

H = plotep(W,B,E)

H = plotep(W,B,E,H)

Description

plotep is used to show network learning on a plot created by plotes.

H = plotep(W,B,E) takes these arguments,

W Current weight value
B Current bias value
E Current error

and returns a cell array H, containing information for continuing the plot.

H = plotep(W,B,E,H) continues plotting using the cell array H returned by the last
call to plotep.

H contains handles to dots plotted on the error surface, so they can be deleted next time;
as well as points on the error contour, so they can be connected.

See Also
errsurf | plotes

Introduced before R2006a
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ploterrcorr

Plot autocorrelation of error time series

Syntax

ploterrcorr(error)

ploterrcorr(errors,'outputIndex',outIdx)

Description

ploterrcorr(error) takes an error time series and plots the autocorrelation of errors
across varying lags.

ploterrcorr(errors,'outputIndex',outIdx) uses the optional property name/
value pair to define which output error autocorrelation is plotted. The default is 1.

Examples

Plot Autocorrelation of Errors

Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;

net = narxnet(1:2,20);

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

net = train(net,Xs,Ts,Xi,Ai);

Y = net(Xs,Xi,Ai);

E = gsubtract(Ts,Y);

ploterrcorr(E)
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See Also
plotinerrcorr | plotresponse

Introduced in R2010b
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ploterrhist

Plot error histogram

Syntax

ploterrhist(e)

ploterrhist(e1,'name1',e2,'name2',...)

ploterrhist(...,'bins',bins)

Description

ploterrhist(e) plots a histogram of error values e.

ploterrhist(e1,'name1',e2,'name2',...) takes any number of errors and names
and plots each pair.

ploterrhist(...,'bins',bins) takes an optional property name/value pair which
defines the number of bins to use in the histogram plot. The default is 20.

Examples

Plot Histogram of Error Values

Here a feedforward network is used to solve a simple fitting problem:

[x,t] = simplefit_dataset;

net = feedforwardnet(20);

net = train(net,x,t);

y = net(x);

e = t - y;

ploterrhist(e,'bins',30)
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See Also
plotconfusion | ploterrcorr | plotinerrcorr

Introduced in R2010b
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plotes

Plot error surface of single-input neuron

Syntax

plotes(WV,BV,ES,V)

Description

plotes(WV,BV,ES,V) takes these arguments,

WV 1-by-N row vector of values of W
BV 1-by-M row vector of values of B
ES M-by-N matrix of error vectors
V View (default = [-37.5, 30])

and plots the error surface with a contour underneath.

Calculate the error surface ES with errsurf.

Examples

Plot Error Surface of Single-Input Neuron

p = [3 2];

t = [0.4 0.8];

wv = -4:0.4:4;

bv = wv;

ES = errsurf(p,t,wv,bv,'logsig');

plotes(wv,bv,ES,[60 30])
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See Also
errsurf

Introduced before R2006a
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plotfit

Plot function fit

Syntax

plotfit(net,inputs,targets)

plotfit(targets1,inputs1,'name1',...)

Description

plotfit(net,inputs,targets) plots the output function of a network across the
range of the inputs inputs and also plots target targets and output data points
associated with values in inputs. Error bars show the difference between outputs and
targets.

The plot appears only for networks with one input.

Only the first output/targets appear if the network has more than one output.

plotfit(targets1,inputs1,'name1',...) displays a series of plots.

Examples

Plot Output and Target Values

This example shows how to use a feed-forward network to solve a simple fitting problem.

[x,t] = simplefit_dataset;

net = feedforwardnet(10);

net = train(net,x,t);

plotfit(net,x,t)

1-297



1 Functions — Alphabetical List

See Also
plottrainstate

Introduced in R2008a
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plotinerrcorr

Plot input to error time-series cross-correlation

Syntax

plotinerrcorr(x,e)

plotinerrcorr(...,'inputIndex',inputIndex)

plotinerrcorr(...,'outputIndex',outputIndex)

Description

plotinerrcorr(x,e) takes an input time series x and an error time series e, and plots
the cross-correlation of inputs to errors across varying lags.

plotinerrcorr(...,'inputIndex',inputIndex) optionally defines which input
element is being correlated and plotted. The default is 1.

plotinerrcorr(...,'outputIndex',outputIndex) optionally defines which error
element is being correlated and plotted. The default is 1.

Examples

Plot Cross-Correlation of Inputs to Errors

Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;

net = narxnet(1:2,20);

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

net = train(net,Xs,Ts,Xi,Ai);

Y = net(Xs,Xi,Ai);

E = gsubtract(Ts,Y);

plotinerrcorr(Xs,E)
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See Also
ploterrcorr | plotresponse | ploterrhist

Introduced in R2010b
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plotpc
Plot classification line on perceptron vector plot

Syntax

plotpc(W,B)

plotpc(W,B,H)

Description

plotpc(W,B) takes these inputs,

W S-by-R weight matrix (R must be 3 or less)
B S-by-1 bias vector

and returns a handle to a plotted classification line.

plotpc(W,B,H) takes an additional input,

H Handle to last plotted line

and deletes the last line before plotting the new one.

This function does not change the current axis and is intended to be called after plotpv.

Examples

Plot Classification Line

The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];

t = [0 0 0 1];

plotpv(p,t)
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The following code creates a perceptron, assigns values to its weights and biases, and
plots the resulting classification line.

net = perceptron;

net = configure(net,p,t);

net.iw{1,1} = [-1.2 -0.5];

net.b{1} = 1;

plotpc(net.iw{1,1},net.b{1})

1-302



 plotpc

See Also
plotpv

Introduced before R2006a
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plotperform

Plot network performance

Syntax

plotperform(TR)

Description

plotperform(TR) plots error vs. epoch for the training, validation, and test
performances of the training record TR returned by the function train.

Examples

Plot Validation Performance of Network

This example shows how to use plotperform to obtain a plot of training record error
values against the number of training epochs.

[x,t] = bodyfat_dataset;

net = feedforwardnet(10);

[net,tr] = train(net,x,t);

plotperform(tr)
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Generally, the error reduces after more epochs of training, but might start to increase on
the validation data set as the network starts overfitting the training data. In the default
setup, the training stops after six consecutive increases in validation error, and the best
performance is taken from the epoch with the lowest validation error.

See Also
plottrainstate

Introduced in R2008a
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plotpv

Plot perceptron input/target vectors

Syntax

plotpv(P,T)

plotpv(P,T,V)

Description

plotpv(P,T) takes these inputs,

P R-by-Q matrix of input vectors (R must be 3 or less)
T S-by-Q matrix of binary target vectors (S must be 3 or less)

and plots column vectors in P with markers based on T.

plotpv(P,T,V) takes an additional input,

V Graph limits = [x_min x_max y_min y_max]

and plots the column vectors with limits set by V.

Examples

Plot Inputs and Targets for Perceptron

This example shows how to define and plot the inputs and targets for a perceptron.

p = [0 0 1 1; 0 1 0 1];

t = [0 0 0 1];

plotpv(p,t)
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See Also
plotpc

Introduced before R2006a
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plotregression

Plot linear regression

Syntax

plotregression(targets,outputs)

plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...)

Description

plotregression(targets,outputs) plots the linear regression of targets relative
to outputs.

plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...)

generates multiple plots.

Examples

Plot Linear Regression

[x,t] = simplefit_dataset;

net = feedforwardnet(10);

net = train(net,x,t);

y = net(x);

plotregression(t,y,'Regression')
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See Also
plottrainstate

Introduced in R2008a
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plotresponse

Plot dynamic network time series response

Syntax

plotresponse(t,y)

plotresponse(t1,'name',t2,'name2',...,y)

plotresponse(...,'outputIndex',outputIndex)

Description

plotresponse(t,y) takes a target time series t and an output time series y, and plots
them on the same axis showing the errors between them.

plotresponse(t1,'name',t2,'name2',...,y) takes multiple target/name pairs,
typically defining training, validation and testing targets, and the output. It plots the
responses with colors indicating the different target sets.

plotresponse(...,'outputIndex',outputIndex) optionally defines which error
element is being correlated and plotted. The default is 1.

Examples

Plot Target and Output Time Series Data

This example shows how to use a NARX network to solve a time series problem.

[X,T] = simplenarx_dataset;

net = narxnet(1:2,20);

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

net = train(net,Xs,Ts,Xi,Ai);

Y = net(Xs,Xi,Ai);

plotresponse(Ts,Y)
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See Also
ploterrcorr | plotinerrcorr | ploterrhist

Introduced in R2010b
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plotroc

Plot receiver operating characteristic

Syntax

plotroc(targets,outputs)

plotroc(targets1,outputs2,'name1',...)

Description

plotroc(targets,outputs) plots the receiver operating characteristic for each
output class. The more each curve hugs the left and top edges of the plot, the better the
classification.

plotroc(targets1,outputs2,'name1',...) generates multiple plots.

Examples

Plot Receiver Operating Characteristic

load simplecluster_dataset

net = patternnet(20);

net = train(net,simpleclusterInputs,simpleclusterTargets);

simpleclusterOutputs = sim(net,simpleclusterInputs);

plotroc(simpleclusterTargets,simpleclusterOutputs)
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See Also
roc

Introduced in R2008a
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plotsom

Plot self-organizing map

Syntax

plotsom(pos)

plotsom(W,D,ND)

Description

plotsom(pos) takes one argument,

POS N-by-S matrix of S N-dimension neural positions

and plots the neuron positions with red dots, linking the neurons within a Euclidean
distance of 1.

plotsom(W,D,ND) takes three arguments,

W S-by-R weight matrix
D S-by-S distance matrix
ND Neighborhood distance (default = 1)

and plots the neuron’s weight vectors with connections between weight vectors whose
neurons are within a distance of 1.

Examples

Plot Self-Organizing Maps

These examples generate plots of various layer topologies.
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pos = hextop([5 6]);

plotsom(pos)

pos = gridtop([4 5]);

plotsom(pos)
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pos = randtop([18 12]);

plotsom(pos)
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pos = gridtop([4 5 2]);

plotsom(pos)
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pos = hextop([4 4 3]);

plotsom(pos)
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See plotsompos for an example of plotting a layer’s weight vectors with the input
vectors they map.

See Also
learnsom

Introduced before R2006a
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plotsomhits

Plot self-organizing map sample hits

Syntax

plotsomhits(net,inputs)

Description

plotsomhits(net,inputs) plots a SOM layer, with each neuron showing the number
of input vectors that it classifies. The relative number of vectors for each neuron is shown
via the size of a colored patch.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop
or randtop.

Examples

Plot SOM Sample Hits

x = iris_dataset;

net = selforgmap([5 5]);

net = train(net,x);

plotsomhits(net,x)
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See Also
plotsomplanes

Introduced in R2008a
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plotsomnc

Plot self-organizing map neighbor connections

Syntax

plotsomnc(net)

Description

plotsomnc(net) plots a SOM layer showing neurons as gray-blue patches and their
direct neighbor relations with red lines.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop
or randtop.

Examples

Plot SOM Neighbor Connections

x = iris_dataset;

net = selforgmap([8 8]);

net = train(net,x);

plotsomnc(net)
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See Also
plotsomnd | plotsomplanes | plotsomhits

Introduced in R2008a
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plotsomnd

Plot self-organizing map neighbor distances

Syntax

plotsomnd(net)

Description

plotsomnd(net) plots a SOM layer showing neurons as gray-blue patches and their
direct neighbor relations with red lines. The neighbor patches are colored from black to
yellow to show how close each neuron’s weight vector is to its neighbors.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop
or randtop.

Examples

Plot SOM Neighbor Distances

x = iris_dataset;

net = selforgmap([5 5]);

net = train(net,x);

plotsomnd(net)
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See Also
plotsomhits | plotsomnc | plotsomplanes

Introduced in R2008a

1-326



 plotsomplanes

plotsomplanes

Plot self-organizing map weight planes

Syntax

plotsomplanes(net)

Description

plotsomplanes(net) generates a set of subplots. Each ith subplot shows the weights
from the ith input to the layer’s neurons, with the most negative connections shown as
blue, zero connections as black, and the strongest positive connections as red.

The plot is only shown for layers organized in one or two dimensions.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop
or randtop.

This function can also be called with standardized plotting function arguments used by
the function train.

Examples

Plot SOM Weight Planes

x = iris_dataset;

net = selforgmap([5 5]);

net = train(net,x);

plotsomplanes(net)
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See Also
plotsomhits | plotsomnc | plotsomnd

Introduced in R2008a
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plotsompos

Plot self-organizing map weight positions

Syntax

plotsompos(net)

plotsompos(net,inputs)

Description

plotsompos(net) plots the input vectors as green dots and shows how the SOM
classifies the input space by showing blue-gray dots for each neuron’s weight vector and
connecting neighboring neurons with red lines.

plotsompos(net,inputs) plots the input data alongside the weights.

Examples

Plot SOM Weight Positions

x = iris_dataset;

net = selforgmap([10 10]);

net = train(net,x);

plotsompos(net,x)
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See Also
plotsomnd | plotsomplanes | plotsomhits

Introduced in R2008a
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plotsomtop

Plot self-organizing map topology

Syntax

plotsomtop(net)

Description

plotsomtop(net) plots the topology of a SOM layer.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop
or randtop.

Examples

Plot SOM Topology

x = iris_dataset;

net = selforgmap([8 8]);

plotsomtop(net)
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See Also
plotsomnd | plotsomplanes | plotsomhits

Introduced in R2008a
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plottrainstate

Plot training state values

Syntax

plottrainstate(tr)

Description

plottrainstate(tr) plots the training state from a training record tr returned by
train.

Examples

Plot Training State Values

This example shows how to plot training state values using plottrainstate.

[x, t] = bodyfat_dataset;

net = feedforwardnet(10);

[net, tr] = train(net, x, t);

plottrainstate(tr)
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See Also
plotfit | plotperform | plotregression

Introduced in R2008a
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plotv

Plot vectors as lines from origin

Syntax

plotv(M,T)

Description

plotv(M,T) takes two inputs,

M R-by-Q matrix of Q column vectors with R elements
T The line plotting type (optional; default = '-')

and plots the column vectors of M.

R must be 2 or greater. If R is greater than 2, only the first two rows of M are used for the
plot.

Examples

Plot Vectors

This example shows how to plot three 2-element vectors.

M = [-0.4 0.7 0.2 ; ...

     -0.5 0.1 0.5];

plotv(M,'-')
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Introduced before R2006a
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plotvec

Plot vectors with different colors

Syntax

plotvec(X,C,M)

Description

plotvec(X,C,M) takes these inputs,

X Matrix of (column) vectors
C Row vector of color coordinates
M Marker (default = '+')

and plots each ith vector in X with a marker M, using the ith value in C as the color
coordinate.

plotvec(X) only takes a matrix X and plots each ith vector in X with marker '+' using
the index i as the color coordinate.

Examples

Plot Vectors with Different Colors

This example shows how to plot four 2-element vectors.

x = [ 0 1 0.5 0.7 ; ...

     -1 2 0.5 0.1];

c = [1 2 3 4];

plotvec(x,c)
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Introduced before R2006a
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plotwb

Plot Hinton diagram of weight and bias values

Syntax

plotwb(net)

plotwb(IW,LW,B)

plotwb(...,'toLayers',toLayers)

plotwb(...,'fromInputs',fromInputs)

plotwb(...,'fromLayers',fromLayers)

plotwb(...,'root',root)

Description

plotwb(net) takes a neural network and plots all its weights and biases.

plotwb(IW,LW,B) takes a neural networks input weights, layer weights and biases and
plots them.

plotwb(...,'toLayers',toLayers) optionally defines which destination layers
whose input weights, layer weights and biases will be plotted.

plotwb(...,'fromInputs',fromInputs) optionally defines which inputs will have
their weights plotted.

plotwb(...,'fromLayers',fromLayers) optionally defines which layers will have
weights coming from them plotted.

plotwb(...,'root',root) optionally defines the root used to scale the weight/bias
patch sizes. The default is 2, which makes the 2-dimensional patch sizes scale directly
with absolute weight and bias sizes. Larger values of root magnify the relative patch
sizes of smaller weights and biases, making differences in smaller values easier to see.
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Examples

Plot Weights and Biases

Here a cascade-forward network is configured for particular data and its weights and
biases are plotted in several ways.

[x,t] = simplefit_dataset;

net = cascadeforwardnet([15 5]);

net = configure(net,x,t);

plotwb(net)

plotwb(net,'root',3)
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plotwb(net,'root',4)
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plotwb(net,'toLayers',2)
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plotwb(net,'fromLayers',1)
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plotwb(net,'toLayers',2,'fromInputs',1)
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See Also
plotsomplanes

Introduced in R2010b
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pnormc
Pseudonormalize columns of matrix

Syntax

pnormc(X,R)

Description

pnormc(X,R) takes these arguments,

X M-by-N matrix
R (Optional) radius to normalize columns to (default = 1)

and returns X with an additional row of elements, which results in new column vector
lengths of R.

Caution For this function to work properly, the columns of X must originally have vector
lengths less than R.

Examples
x = [0.1 0.6; 0.3 0.1];

y = pnormc(x)

See Also
normc | normr

Introduced before R2006a
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poslin
Positive linear transfer function

Graph and Symbol

Syntax

A = poslin(N,FP)

info = poslin('code')

Description

poslin is a neural transfer function. Transfer functions calculate a layer’s output from
its net input.

A = poslin(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements clipped to [0, inf].

info = poslin('code') returns information about this function. The following codes
are supported:
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poslin('name') returns the name of this function.

poslin('output',FP) returns the [min max] output range.

poslin('active',FP) returns the [min max] active range.

poslin('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-
by-Q.

poslin('fpnames') returns the names of the function parameters.

poslin('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the poslin transfer function.

n = -5:0.1:5;

a = poslin(n);

plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'poslin';

Network Use

To change a network so that a layer uses poslin, set net.layers{i}.transferFcn to
'poslin'.

Call sim to simulate the network with poslin.

Algorithms

The transfer function poslin returns the output n if n is greater than or equal to zero
and 0 if n is less than or equal to zero.

poslin(n) = n, if n >= 0

          = 0, if n <= 0
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See Also
sim | purelin | satlin | satlins

Introduced before R2006a
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preparets
Prepare input and target time series data for network simulation or training

Syntax

[Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW)

Description

This function simplifies the normally complex and error prone task of reformatting input
and target time series. It automatically shifts input and target time series as many steps
as are needed to fill the initial input and layer delay states. If the network has open-loop
feedback, then it copies feedback targets into the inputs as needed to define the open-loop
inputs.

Each time a new network is designed, with different numbers of delays or feedback
settings, preparets can reformat input and target data accordingly. Also, each time a
network is transformed with openloop, closeloop, removedelay or adddelay, this
function can reformat the data accordingly.

[Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW) takes these
arguments,

net Neural network
Xnf Non-feedback inputs
Tnf Non-feedback targets
Tf Feedback targets
EW Error weights (default = {1})

and returns,

Xs Shifted inputs
Xi Initial input delay states
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Ai Initial layer delay states
Ts Shifted targets
EWs Shifted error weights
shift The number of timesteps truncated from the front of X and T

in order to properly fill Xi and Ai.

Examples

Prepare Data for Open- and Closed-Loop Networks

Here a time-delay network with 20 hidden neurons is created, trained and simulated.

[X,T] = simpleseries_dataset;

net = timedelaynet(1:2,20);

[Xs,Xi,Ai,Ts] = preparets(net,X,T);

net = train(net,Xs,Ts);

view(net)

Y = net(Xs,Xi,Ai);

Here a NARX network is designed. The NARX network has a standard input and an
open-loop feedback output to an associated feedback input.

[X,T] = simplenarx_dataset;

net = narxnet(1:2,1:2,20);

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

net = train(net,Xs,Ts,Xi,Ai);

view(net)

y = net(Xs,Xi,Ai);
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Now the network is converted to closed loop, and the data is reformatted to simulate the
network’s closed-loop response.

net = closeloop(net);

view(net)

[Xs,Xi,Ai] = preparets(net,X,{},T);

y = net(Xs,Xi,Ai);

See Also
adddelay | closeloop | narnet | narxnet | openloop | removedelay |
timedelaynet
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Introduced in R2010b
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processpca
Process columns of matrix with principal component analysis

Syntax

[Y,PS] = processpca(X,maxfrac)

[Y,PS] = processpca(X,FP)

Y = processpca('apply',X,PS)

X = processpca('reverse',Y,PS)

name = processpca('name')

fp = processpca('pdefaults')

names = processpca('pdesc')

processpca('pcheck',fp);

Description

processpca processes matrices using principal component analysis so that each row is
uncorrelated, the rows are in the order of the amount they contribute to total variation,
and rows whose contribution to total variation are less than maxfrac are removed.

[Y,PS] = processpca(X,maxfrac) takes X and an optional parameter,

X N-by-Q matrix
maxfrac Maximum fraction of variance for removed rows (default is 0)

and returns

Y M-by-Q matrix with N - M rows deleted
PS Process settings that allow consistent processing of values

[Y,PS] = processpca(X,FP) takes parameters as a struct: FP.maxfrac.

Y = processpca('apply',X,PS) returns Y, given X and settings PS.

X = processpca('reverse',Y,PS) returns X, given Y and settings PS.

name = processpca('name') returns the name of this process method.
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fp = processpca('pdefaults') returns default process parameter structure.

names = processpca('pdesc') returns the process parameter descriptions.

processpca('pcheck',fp); throws an error if any parameter is illegal.

Examples

Here is how to format a matrix with an independent row, a correlated row, and a
completely redundant row so that its rows are uncorrelated and the redundant row is
dropped.

x1_independent = rand(1,5)

x1_correlated = rand(1,5) + x1_independent;

x1_redundant = x1_independent + x1_correlated

x1 = [x1_independent; x1_correlated; x1_redundant]

[y1,ps] = processpca(x1)

Next, apply the same processing settings to new values.

x2_independent = rand(1,5)

x2_correlated = rand(1,5) + x1_independent;

x2_redundant = x1_independent + x1_correlated

x2 = [x2_independent; x2_correlated; x2_redundant];

y2 = processpca('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = processpca('reverse',y1,ps)

Definitions

Reduce Input Dimensionality Using processpca

In some situations, the dimension of the input vector is large, but the components of
the vectors are highly correlated (redundant). It is useful in this situation to reduce the
dimension of the input vectors. An effective procedure for performing this operation is
principal component analysis. This technique has three effects: it orthogonalizes the
components of the input vectors (so that they are uncorrelated with each other), it orders
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the resulting orthogonal components (principal components) so that those with the
largest variation come first, and it eliminates those components that contribute the least
to the variation in the data set. The following code illustrates the use of processpca,
which performs a principal-component analysis using the processing setting maxfrac of
0.02.

[pn,ps1] = mapstd(p);

[ptrans,ps2] = processpca(pn,0.02);

The input vectors are first normalized, using mapstd, so that they have zero mean
and unity variance. This is a standard procedure when using principal components.
In this example, the second argument passed to processpca is 0.02. This means that
processpca eliminates those principal components that contribute less than 2% to
the total variation in the data set. The matrix ptrans contains the transformed input
vectors. The settings structure ps2 contains the principal component transformation
matrix. After the network has been trained, these settings should be used to transform
any future inputs that are applied to the network. It effectively becomes a part of the
network, just like the network weights and biases. If you multiply the normalized input
vectors pn by the transformation matrix transMat, you obtain the transformed input
vectors ptrans.

If processpca is used to preprocess the training set data, then whenever the trained
network is used with new inputs, you should preprocess them with the transformation
matrix that was computed for the training set, using ps2. The following code applies a
new set of inputs to a network already trained.

pnewn = mapstd('apply',pnew,ps1);

pnewtrans = processpca('apply',pnewn,ps2);

a = sim(net,pnewtrans);

Principal component analysis is not reliably reversible. Therefore it is only recommended
for input processing. Outputs require reversible processing functions.

Principal component analysis is not part of the default processing for feedforwardnet.
You can add this with the following command:

net.inputs{1}.processFcns{end+1} = 'processpca';

Algorithms

Values in rows whose elements are not all the same value are set to
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y = 2*(x-minx)/(maxx-minx) - 1;

Values in rows with all the same value are set to 0.

See Also
fixunknowns | mapstd | mapminmax

Introduced in R2006a
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prune
Delete neural inputs, layers, and outputs with sizes of zero

Syntax

[net,pi,pl,po] = prune(net)

Description

This function removes zero-sized inputs, layers, and outputs from a network. This leaves
a network which may have fewer inputs and outputs, but which implements the same
operations, as zero-sized inputs and outputs do not convey any information.

One use for this simplification is to prepare a network with zero sized subobjects for
Simulink, where zero sized signals are not supported.

The companion function prunedata can prune data to remain consistent with the
transformed network.

[net,pi,pl,po] = prune(net) takes a neural network and returns

net The same network with zero-sized subobjects removed
pi Indices of pruned inputs
pl Indices of pruned layers
po Indices of pruned outputs

Examples

Here a NARX dynamic network is created which has one external input and a second
input which feeds back from the output.

net = narxnet(20);

view(net)
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The network is then trained on a single random time-series problem with 50 timesteps.
The external input happens to have no elements.

X = nndata(0,1,50);

T = nndata(1,1,50);

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

net = train(net,Xs,Ts);

The network and data are then pruned before generating a Simulink diagram and
initializing its input and layer states.

[net2,pi,pl,po] = prune(net);

view(net)

[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)

[sysName,netName] = gensim(net);

setsiminit(sysName,netName,Xi2,Ai2)

See Also
prunedata | gensim

Introduced in R2010b
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prunedata
Prune data for consistency with pruned network

Syntax

[Xp,Xip,Aip,Tp] = prunedata(pi,pl,po,X,Xi,Ai,T)

Description

This function prunes data to be consistent with a network whose zero-sized inputs,
layers, and outputs have been removed with prune.

One use for this simplification is to prepare a network with zero-sized subobjects for
Simulink, where zero-sized signals are not supported.

[Xp,Xip,Aip,Tp] = prunedata(pi,pl,po,X,Xi,Ai,T) takes these arguments,

pi Indices of pruned inputs
pl Indices of pruned layers
po Indices of pruned outputs
X Input data
Xi Initial input delay states
Ai Initial layer delay states
T Target data

and returns the pruned inputs, input and layer delay states, and targets.

Examples

Here a NARX dynamic network is created which has one external input and a second
input which feeds back from the output.

net = narxnet(20);
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view(net)

The network is then trained on a single random time-series problem with 50 timesteps.
The external input happens to have no elements.

X = nndata(0,1,50);

T = nndata(1,1,50);

[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);

net = train(net,Xs,Ts);

The network and data are then pruned before generating a Simulink diagram and
initializing its input and layer states.

[net2,pi,pl,po] = prune(net);

view(net)

[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)

[sysName,netName] = gensim(net);

setsiminit(sysName,netName,Xi2,Ai2)

See Also
prune | gensim

Introduced in R2010b
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purelin
Linear transfer function

Graph and Symbol

Syntax

A = purelin(N,FP)

info = purelin('code')

Description

purelin is a neural transfer function. Transfer functions calculate a layer’s output from
its net input.

A = purelin(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix equal to N.

info = purelin('code') returns useful information for each supported code string:

purelin('name') returns the name of this function.
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purelin('output',FP) returns the [min max] output range.

purelin('active',FP) returns the [min max] active input range.

purelin('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or
S-by-Q.

purelin('fpnames') returns the names of the function parameters.

purelin('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the purelin transfer function.

n = -5:0.1:5;

a = purelin(n);

plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'purelin';

Algorithms
a = purelin(n) = n

See Also
sim | satlin | satlins

Introduced before R2006a
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quant
Discretize values as multiples of quantity

Syntax

quant(X,Q)

Description

quant(X,Q) takes two inputs,

X Matrix, vector, or scalar
Q Minimum value

and returns values from X rounded to nearest multiple of Q.

Examples
x = [1.333 4.756 -3.897];

y = quant(x,0.1)

Introduced before R2006a
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radbas
Radial basis transfer function

Graph and Symbol

Syntax

A = radbas(N,FP)

Description

radbas is a neural transfer function. Transfer functions calculate a layer’s output from
its net input.

A = radbas(N,FP) takes one or two inputs,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the radial basis function applied to each element of N.

Examples

Here you create a plot of the radbas transfer function.
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n = -5:0.1:5;

a = radbas(n);

plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'radbas';

Algorithms
a = radbas(n) = exp(-n^2)

See Also
sim | radbasn | tribas

Introduced before R2006a
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radbasn
Normalized radial basis transfer function

Graph and Symbol

Syntax
A = radbasn(N,FP)

Description
radbasn is a neural transfer function. Transfer functions calculate a layer’s output
from its net input. This function is equivalent to radbas, except that output vectors are
normalized by dividing by the sum of the pre-normalized values.

A = radbasn(N,FP) takes one or two inputs,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the radial basis function applied to each element of N.

Examples
Here six random 3-element vectors are passed through the radial basis transform and
normalized.
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n = rand(3,6)

a = radbasn(n)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'radbasn';

Algorithms
a = radbasn(n) = exp(-n^2) / sum(exp(-n^2))

See Also
sim | radbas | tribas

Introduced in R2010b

1-369



1 Functions — Alphabetical List

randnc
Normalized column weight initialization function

Syntax

W = randnc(S,PR)

Description

randnc is a weight initialization function.

W = randnc(S,PR) takes two inputs,

S Number of rows (neurons)
PR R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R random matrix with normalized columns.

You can also call this in the form randnc(S,R).

Examples

A random matrix of four normalized three-element columns is generated:

M = randnc(3,4)

M =

    -0.6007   -0.4715   -0.2724    0.5596

    -0.7628   -0.6967   -0.9172    0.7819

    -0.2395    0.5406   -0.2907    0.2747

See Also
randnr

Introduced before R2006a
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randnr
Normalized row weight initialization function

Syntax

W = randnr(S,PR)

Description

randnr is a weight initialization function.

W = randnr(S,PR) takes two inputs,

S Number of rows (neurons)
PR R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R random matrix with normalized rows.

You can also call this in the form randnr(S,R).

Examples

A matrix of three normalized four-element rows is generated:

M = randnr(3,4)

M =

    0.9713    0.0800   -0.1838   -0.1282

    0.8228    0.0338    0.1797    0.5381

   -0.3042   -0.5725    0.5436    0.5331

See Also
randnc

Introduced before R2006a
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rands
Symmetric random weight/bias initialization function

Syntax

W = rands(S,PR)

M = rands(S,R)

v = rands(S)

Description

rands is a weight/bias initialization function.

W = rands(S,PR) takes

S Number of neurons
PR R-by-2 matrix of R input ranges

and returns an S-by-R weight matrix of random values between –1 and 1.

M = rands(S,R) returns an S-by-R matrix of random values. v = rands(S) returns
an S-by-1 vector of random values.

Examples

Here, three sets of random values are generated with rands.

rands(4,[0 1; -2 2])

rands(4)

rands(2,3)

Network Use

To prepare the weights and the bias of layer i of a custom network to be initialized with
rands,
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1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set each net.inputWeights{i,j}.initFcn to 'rands'.
4 Set each net.layerWeights{i,j}.initFcn to 'rands'.
5 Set each net.biases{i}.initFcn to 'rands'.

To initialize the network, call init.

See Also
randsmall | randnr | randnc | initwb | initlay | init

Introduced before R2006a
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randsmall
Small random weight/bias initialization function

Syntax

W = randsmall(S,PR)

M = rands(S,R)

v = rands(S)

Description

randsmall is a weight/bias initialization function.

W = randsmall(S,PR) takes

S Number of neurons
PR R-by-2 matrix of R input ranges

and returns an S-by-R weight matrix of small random values between –0.1 and 0.1.

M = rands(S,R) returns an S-by-R matrix of random values. v = rands(S) returns
an S-by-1 vector of random values.

Examples

Here three sets of random values are generated with rands.

randsmall(4,[0 1; -2 2])

randsmall(4)

randsmall(2,3)

Network Use

To prepare the weights and the bias of layer i of a custom network to be initialized with
rands,

1-374



 randsmall

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set each net.inputWeights{i,j}.initFcn to 'randsmall'.
4 Set each net.layerWeights{i,j}.initFcn to 'randsmall'.
5 Set each net.biases{i}.initFcn to 'randsmall'.

To initialize the network, call init.

See Also
rands | randnr | randnc | initwb | initlay | init

Introduced in R2010b
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randtop

Random layer topology function

Syntax

pos = randtop(dimensions)

Description

randtop calculates the neuron positions for layers whose neurons are arranged in an N-
dimensional random pattern.

pos = randtop(dimensions) takes one argument:

dimensions Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors, where N is the number of
dimensions and S is the product of dimensions.

Examples

Display Layer with Random Pattern

This shows how to display a two-dimensional layer with neurons arranged in a random
pattern.

pos = randtop([18 12]);

plotsom(pos)
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See Also
gridtop | hextop | tritop

Introduced before R2006a

1-377



1 Functions — Alphabetical List

regression

Linear regression

Syntax

[r,m,b] = regression(t,y)

[r,m,b] = regression(t,y,'one')

Description

[r,m,b] = regression(t,y) takes these arguments,

t Target matrix or cell array data with a total of N matrix rows
y Output matrix or cell array data of the same size

and returns these outputs,

r Regression values for each of the N matrix rows
m Slope of regression fit for each of the N matrix rows
b Offset of regression fit for each of the N matrix rows

[r,m,b] = regression(t,y,'one') combines all matrix rows before regressing, and
returns single scalar regression, slope, and offset values.

Examples

Fit Regression Model and Plot Fitted Values versus Targets

Train a feedforward network, then calculate and plot the regression between its targets
and outputs.
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[x,t] = simplefit_dataset;

net = feedforwardnet(20);

net = train(net,x,t);

y = net(x);

[r,m,b] = regression(t,y)

plotregression(t,y)

r =

    1.0000

m =

    1.0000

b =

   1.0878e-04
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See Also
plotregression | confusion

Introduced in R2010b
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removeconstantrows
Process matrices by removing rows with constant values

Syntax

[Y,PS] = removeconstantrows(X,max_range)

[Y,PS] = removeconstantrows(X,FP)

Y = removeconstantrows('apply',X,PS)

X = removeconstantrows('reverse',Y,PS)

Description

removeconstantrows processes matrices by removing rows with constant values.

[Y,PS] = removeconstantrows(X,max_range) takes X and an optional parameter,

X N-by-Q matrix
max_range Maximum range of values for row to be removed (default is 0)

and returns

Y M-by-Q matrix with N - M rows deleted
PS Process settings that allow consistent processing of values

[Y,PS] = removeconstantrows(X,FP) takes parameters as a struct:
FP.max_range.

Y = removeconstantrows('apply',X,PS) returns Y, given X and settings PS.

X = removeconstantrows('reverse',Y,PS) returns X, given Y and settings PS.

Any NaN values in the input matrix are treated as missing data, and are not considered
as unique values. So, for example, removeconstantrows removes the first row from the
matrix [1 1 1 NaN; 1 1 1 2].

1-381



1 Functions — Alphabetical List

Examples

Format a matrix so that the rows with constant values are removed.

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0];

[y1,PS] = removeconstantrows(x1);

y1 =

     1     2     4

     3     2     2

PS = 

    max_range: 0

         keep: [1 3]

       remove: [2 4]

        value: [2x1 double]

        xrows: 4

        yrows: 2

    constants: [2x1 double]

    no_change: 0

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0];

y2 = removeconstantrows('apply',x2,PS)

5     2     3

6     7     3

Reverse the processing of y1 to get the original x1 matrix.

x1_again = removeconstantrows('reverse',y1,PS)

1     2     4

1     1     1

3     2     2

0     0     0

See Also
fixunknowns | mapstd | mapminmax | processpca

Introduced in R2006a
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removedelay
Remove delay to neural network’s response

Syntax

net = removedelay(net,n)

Description

net = removedelay(net,n) takes these arguments,

net Neural network
n Number of delays

and returns the network with input delay connections decreased, and output feedback
delays increased, by the specified number of delays n. The result is a network which
behaves identically, except that outputs are produced n timesteps earlier.

If the number of delays n is not specified, a default of one delay is used.

Examples

Remove and Add Delay to Network

This example creates, trains, and simulates a time delay network in its original form,
on an input time series X and target series T. Then the delay is removed and later added
back. The first and third outputs will be identical, while the second result will include a
new prediction for the following step.

[X,T] = simpleseries_dataset;

net1 = timedelaynet(1:2,20);

[Xs,Xi,Ai,Ts] = preparets(net1,X,T);

net1 = train(net1,Xs,Ts,Xi);

y1 = net1(Xs,Xi);

view(net1)
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net2 = removedelay(net1);

[Xs,Xi,Ai,Ts] = preparets(net2,X,T);

y2 = net2(Xs,Xi);

view(net2)

net3 = adddelay(net2);

[Xs,Xi,Ai,Ts] = preparets(net3,X,T);

y3 = net3(Xs,Xi);

view(net3)
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See Also
adddelay | closeloop | openloop

Introduced in R2010b
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removerows
Process matrices by removing rows with specified indices

Syntax

[Y,PS] = removerows(X,'ind',ind)

[Y,PS] = removerows(X,FP)

Y = removerows('apply',X,PS)

X = removerows('reverse',Y,PS)

dx_dy = removerows('dx',X,Y,PS)

dx_dy = removerows('dx',X,[],PS)

name = removerows('name')

fp = removerows('pdefaults')

names = removerows('pdesc')

removerows('pcheck',FP)

Description

removerows processes matrices by removing rows with the specified indices.

[Y,PS] = removerows(X,'ind',ind) takes X and an optional parameter,

X N-by-Q matrix
ind Vector of row indices to remove (default is [])

and returns

Y M-by-Q matrix, where M == N-length(ind)
PS Process settings that allow consistent processing of values

[Y,PS] = removerows(X,FP) takes parameters as a struct: FP.ind.

Y = removerows('apply',X,PS) returns Y, given X and settings PS.

X = removerows('reverse',Y,PS) returns X, given Y and settings PS.
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dx_dy = removerows('dx',X,Y,PS) returns the M-by-N-by-Q derivative of Y with
respect to X.

dx_dy = removerows('dx',X,[],PS) returns the derivative, less efficiently.

name = removerows('name') returns the name of this process method.

fp = removerows('pdefaults') returns the default process parameter structure.

names = removerows('pdesc') returns the process parameter descriptions.

removerows('pcheck',FP) throws an error if any parameter is illegal.

Examples

Here is how to format a matrix so that rows 2 and 4 are removed:

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]

[y1,ps] = removerows(x1,'ind',[2 4])

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]

y2 = removerows('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = removerows('reverse',y1,ps)

Algorithms

In the reverse calculation, the unknown values of replaced rows are represented with
NaN values.

See Also
fixunknowns | mapstd | mapminmax | processpca

Introduced in R2006a
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revert
Change network weights and biases to previous initialization values

Syntax

net = revert (net)

Description

net = revert (net) returns neural network net with weight and bias values restored
to the values generated the last time the network was initialized.

If the network is altered so that it has different weight and bias connections or different
input or layer sizes, then revert cannot set the weights and biases to their previous
values and they are set to zeros instead.

Examples

Here a perceptron is created with input size set to 2 and number of neurons to 1.

net = perceptron;

net.inputs{1}.size = 2;

net.layers{1}.size = 1;

The initial network has weights and biases with zero values.

net.iw{1,1}, net.b{1}

Change these values as follows:

net.iw{1,1} = [1 2]; 

net.b{1} = 5;

net.iw{1,1}, net.b{1}

You can recover the network’s initial values as follows:

net = revert(net);
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net.iw{1,1}, net.b{1}

See Also
init | sim | adapt | train

Introduced before R2006a
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roc
Receiver operating characteristic

Syntax

[tpr,fpr,thresholds] = roc(targets,outputs)

Description

The receiver operating characteristic is a metric used to check the quality of classifiers.
For each class of a classifier, roc applies threshold values across the interval [0,1] to
outputs. For each threshold, two values are calculated, the True Positive Ratio (TPR) and
the False Positive Ratio (FPR). For a particular class i, TPR is the number of outputs
whose actual and predicted class is class i, divided by the number of outputs whose
predicted class is class i. FPR is the number of outputs whose actual class is not class i,
but predicted class is class i, divided by the number of outputs whose predicted class is
not class i.

You can visualize the results of this function with plotroc.

[tpr,fpr,thresholds] = roc(targets,outputs) takes these arguments:

targets S-by-Q matrix, where each column vector contains a single 1
value, with all other elements 0. The index of the 1 indicates
which of S categories that vector represents.

outputs S-by-Q matrix, where each column contains values in
the range [0,1]. The index of the largest element in the
column indicates which of S categories that vector presents.
Alternately, 1-by-Q vector, where values greater or equal
to 0.5 indicate class membership, and values below 0.5,
nonmembership.

and returns these values:

tpr 1-by-S cell array of 1-by-N true-positive/positive ratios.
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fpr 1-by-S cell array of 1-by-N false-positive/negative ratios.
thresholds 1-by-S cell array of 1-by-N thresholds over interval [0,1].

roc(targets,outputs) takes these arguments:

targets 1-by-Q matrix of Boolean values indicating class membership.
outputs S-by-Q matrix, of values in [0,1] interval, where values

greater than or equal to 0.5 indicate class membership.

and returns these values:

tpr 1-by-N vector of true-positive/positive ratios.
fpr 1-by-N vector of false-positive/negative ratios.
thresholds 1-by-N vector of thresholds over interval [0,1].

Examples
load iris_dataset

net = patternnet(20);

net = train(net,irisInputs,irisTargets);

irisOutputs = sim(net,irisInputs);

[tpr,fpr,thresholds] = roc(irisTargets,irisOutputs)

See Also
plotroc | confusion

Introduced in R2008a
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sae
Sum absolute error performance function

Syntax

perf = sae(net,t,y,ew)

[...] = sae(...,'regularization',regularization)

[...] = sae(...,'normalization',normalization)

[...] = sae(...,'squaredWeighting',squaredWeighting)

[...] = sae(...,FP)

Description

sae is a network performance function. It measures performance according to the sum of
squared errors.

perf = sae(net,t,y,ew) takes these input arguments and optional function
parameters,

net Neural network
t Matrix or cell array of target vectors
y Matrix or cell array of output vectors
ew Error weights (default = {1})

and returns the sum squared error.

This function has three optional function parameters that can be defined with parameter
name/pair arguments, or as a structure FP argument with fields having the parameter
name and assigned the parameter values:

[...] = sae(...,'regularization',regularization)

[...] = sae(...,'normalization',normalization)

[...] = sae(...,'squaredWeighting',squaredWeighting)
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[...] = sae(...,FP)

• regularization — can be set to any value between the default of 0 and 1. The
greater the regularization value, the more squared weights and biases are taken into
account in the performance calculation.

• normalization — can be set to the default 'absolute', or 'normalized' (which
normalizes errors to the [+2 -2] range consistent with normalized output and target
ranges of [-1 1]) or 'percent' (which normalizes errors to the range [-1 +1]).

• squaredWeighting — can be set to the default false, for applying error weights
to absolute errors, or false for applying error weights to the squared errors before
squaring.

Examples

Here a network is trained to fit a simple data set and its performance calculated

[x,t] = simplefit_dataset;

net = fitnet(10,'trainscg');

net.performFcn = 'sae';

net = train(net,x,t)

y = net(x)

e = t-y

perf = sae(net,t,y)

Network Use

To prepare a custom network to be trained with sae, set net.performFcn to 'sae'.
This automatically sets net.performParam to the default function parameters.

Then calling train, adapt or perform will result in sae being used to calculate
performance.

Introduced in R2010b

1-393



1 Functions — Alphabetical List

satlin
Saturating linear transfer function

Graph and Symbol

Syntax

A = satlin(N,FP)

Description

satlin is a neural transfer function. Transfer functions calculate a layer’s output from
its net input.

A = satlin(N,FP) takes one input,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements clipped to [0, 1].

info = satlin('code') returns useful information for each supported code string:

satlin('name') returns the name of this function.

satlin('output',FP) returns the [min max] output range.
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satlin('active',FP) returns the [min max] active input range.

satlin('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-
by-Q.

satlin('fpnames') returns the names of the function parameters.

satlin('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the satlin transfer function.

n = -5:0.1:5;

a = satlin(n);

plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'satlin';

Algorithms
a = satlin(n) = 0, if n <= 0

n, if 0 <= n <= 1

1, if 1 <= n

See Also
sim | poslin | satlins | purelin

Introduced before R2006a
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satlins
Symmetric saturating linear transfer function

Graph and Symbol

Syntax

A = satlins(N,FP)

Description

satlins is a neural transfer function. Transfer functions calculate a layer’s output from
its net input.

A = satlins(N,FP) takes N and an optional argument,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (optional, ignored)

and returns A, the S-by-Q matrix of N’s elements clipped to [-1, 1].

info = satlins('code') returns useful information for each supported code string:

satlins('name') returns the name of this function.

satlins('output',FP) returns the [min max] output range.
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satlins('active',FP) returns the [min max] active input range.

satlins('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or
S-by-Q.

satlins('fpnames') returns the names of the function parameters.

satlins('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the satlins transfer function.

n = -5:0.1:5;

a = satlins(n);

plot(n,a)

Algorithms
satlins(n) = -1, if n <= -1

n, if -1 <= n <= 1

1, if 1 <= n

See Also
sim | satlin | poslin | purelin

Introduced before R2006a
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scalprod
Scalar product weight function

Syntax

Z = scalprod(W,P)

dim = scalprod('size',S,R,FP)

dw = scalprod('dw',W,P,Z,FP)

Description

scalprod is the scalar product weight function. Weight functions apply weights to an
input to get weighted inputs.

Z = scalprod(W,P) takes these inputs,

W 1-by-1 weight matrix
P R-by-Q matrix of Q input (column) vectors

and returns the R-by-Q scalar product of W and P defined by Z = w*P.

dim = scalprod('size',S,R,FP) takes the layer dimension S, input dimension R,
and function parameters, and returns the weight size [1-by-1].

dw = scalprod('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

Examples

Here you define a random weight matrix W and input vector P and calculate the
corresponding weighted input Z.

W = rand(1,1);

P = rand(3,1);

Z = scalprod(W,P)
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Network Use

To change a network so an input weight uses scalprod, set
net.inputWeights{i,j}.weightFcn to 'scalprod'.

For a layer weight, set net.layerWeights{i,j}.weightFcn to 'scalprod'.

In either case, call sim to simulate the network with scalprod.

See help newp and help newlin for simulation examples.

See Also
dotprod | sim | dist | negdist | normprod

Introduced in R2006a
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selforgmap
Self-organizing map

Syntax

selforgmap(dimensions,coverSteps,initNeighbor,topologyFcn,distanceFcn)

Description

Self-organizing maps learn to cluster data based on similarity, topology, with a
preference (but no guarantee) of assigning the same number of instances to each class.

Self-organizing maps are used both to cluster data and to reduce the dimensionality of
data. They are inspired by the sensory and motor mappings in the mammal brain, which
also appear to automatically organizing information topologically.

selforgmap(dimensions,coverSteps,initNeighbor,topologyFcn,distanceFcn)

takes these arguments,

dimensions Row vector of dimension sizes (default = [8 8])
coverSteps Number of training steps for initial covering of the input

space (default = 100)
initNeighbor Initial neighborhood size (default = 3)
topologyFcn Layer topology function (default = 'hextop')
distanceFcn Neuron distance function (default = 'linkdist')

and returns a self-organizing map.

Examples

Use Self-Organizing Map to Cluster Data

Here a self-organizing map is used to cluster a simple set of data.
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x = simplecluster_dataset;

net = selforgmap([8 8]);

net = train(net,x);

view(net)

y = net(x);

classes = vec2ind(y);

See Also
lvqnet | competlayer | nctool

Introduced in R2010b
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separatewb
Separate biases and weight values from weight/bias vector

Syntax

[b,IW,LW] = separatewb(net,wb)

Description

[b,IW,LW] = separatewb(net,wb) takes two arguments,

net Neural network
wb Weight/bias vector

and returns

b Cell array of bias vectors
IW Cell array of input weight matrices
LW Cell array of layer weight matrices

Examples

Here a feedforward network is trained to fit some data, then its bias and weight values
formed into a vector. The single vector is then redivided into the original biases and
weights.

[x,t] = simplefit_dataset;

net = feedforwardnet(20);

net = train(net,x,t);

wb = formwb(net,net.b,net.iw,net.lw)

[b,iw,lw] = separatewb(net,wb)

See Also
getwb | formwb | setwb
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Introduced in R2010b
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seq2con
Convert sequential vectors to concurrent vectors

Syntax

b = seq2con(s)

Description

Neural Network Toolbox software represents batches of vectors with a matrix, and
sequences of vectors with multiple columns of a cell array.

seq2con and con2seq allow concurrent vectors to be converted to sequential vectors,
and back again.

b = seq2con(s) takes one input,

s N-by-TS cell array of matrices with M columns

and returns

b N-by-1 cell array of matrices with M*TS columns

Examples

Here three sequential values are converted to concurrent values.

p1 = {1 4 2}

p2 = seq2con(p1)

Here two sequences of vectors over three time steps are converted to concurrent vectors.

p1 = {[1; 1] [5; 4] [1; 2]; [3; 9] [4; 1] [9; 8]}

p2 = seq2con(p1)
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See Also
con2seq | concur

Introduced before R2006a
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setelements
Set neural network data elements

Syntax

setelements(x,i,v)

Description

setelements(x,i,v) takes these arguments,

x Neural network matrix or cell array data
i Indices
v Neural network data to store into x

and returns the original data x with the data v stored in the elements indicated by the
indices i.

Examples

This code sets elements 1 and 3 of matrix data:

x = [1 2; 3 4; 7 4]

v = [10 11; 12 13];

y = setelements(x,[1 3],v)

This code sets elements 1 and 3 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

v = {[20 21 22; 23 24 25] [26 27 28; 29 30 31]}

y = setelements(x,[1 3],v)

See Also
nndata | numelements | getelements | catelements | setsamples | setsignals
| settimesteps
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Introduced in R2010b
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setsamples
Set neural network data samples

Syntax

setsamples(x,i,v)

Description

setsamples(x,i,v) takes these arguments,

x Neural network matrix or cell array data
i Indices
v Neural network data to store into x

and returns the original data x with the data v stored in the samples indicated by the
indices i.

Examples

This code sets samples 1 and 3 of matrix data:

x = [1 2 3; 4 7 4]

v = [10 11; 12 13];

y = setsamples(x,[1 3],v)

This code sets samples 1 and 3 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

v = {[20 21; 22 23] [24 25; 26 27]; [28 29] [30 31]}

y = setsamples(x,[1 3],v)

See Also
nndata | numsamples | getsamples | catsamples | setelements | setsignals |
settimesteps
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Introduced in R2010b
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setsignals
Set neural network data signals

Syntax

setsignals(x,i,v)

Description

setsignals(x,i,v) takes these arguments,

x Neural network matrix or cell array data
i Indices
v Neural network data to store into x

and returns the original data x with the data v stored in the signals indicated by the
indices i.

Examples

This code sets signal 2 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

v = {[20:22] [23:25]}

y = setsignals(x,2,v)

See Also
nndata | numsignals | getsignals | catsignals | setelements | setsamples |
settimesteps

Introduced in R2010b
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setsiminit
Set neural network Simulink block initial conditions

Syntax

setsiminit(sysName,netName,net,xi,ai,Q)

Description

setsiminit(sysName,netName,net,xi,ai,Q) takes these arguments,

sysName The name of the Simulink system containing the neural
network block

netName The name of the Simulink neural network block
net The original neural network
xi Initial input delay states
ai Initial layer delay states
Q Sample number (default is 1)

and sets the Simulink neural network blocks initial conditions as specified.

Examples

Here a NARX network is designed. The NARX network has a standard input and an open
loop feedback output to an associated feedback input.

[x,t] = simplenarx_dataset;

     net = narxnet(1:2,1:2,20);

     view(net)

     [xs,xi,ai,ts] = preparets(net,x,{},t);

     net = train(net,xs,ts,xi,ai);

     y = net(xs,xi,ai);

Now the network is converted to closed loop, and the data is reformatted to simulate the
network’s closed loop response.
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net = closeloop(net);

view(net)

[xs,xi,ai,ts] = preparets(net,x,{},t);

y = net(xs,xi,ai);

Here the network is converted to a Simulink system with workspace input and output
ports. Its delay states are initialized, inputs X1 defined in the workspace, and it is ready
to be simulated in Simulink.

[sysName,netName] = gensim(net,'InputMode','Workspace',...

 'OutputMode','WorkSpace','SolverMode','Discrete');

setsiminit(sysName,netName,net,xi,ai,1);

x1 = nndata2sim(x,1,1);

Finally the initial input and layer delays are obtained from the Simulink model. (They
will be identical to the values set with setsiminit.)

[xi,ai] = getsiminit(sysName,netName,net);

See Also
gensim | getsiminit | nndata2sim | sim2nndata

Introduced in R2010b
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settimesteps
Set neural network data timesteps

Syntax

settimesteps(x,i,v)

Description

settimesteps(x,i,v) takes these arguments,

x Neural network matrix or cell array data
i Indices
v Neural network data to store into x

and returns the original data x with the data v stored in the timesteps indicated by the
indices i.

Examples

This code sets timestep 2 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}

v = {[20:22; 23:25]; [25:27]}

y = settimesteps(x,2,v)

See Also
nndata | numtimesteps | gettimesteps | cattimesteps | setelements |
setsamples | setsignals

Introduced in R2010b
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setwb

Set all network weight and bias values with single vector

Syntax

net = setwb(net,wb)

Description

This function sets a network’s weight and biases to a vector of values.

net = setwb(net,wb) takes the following inputs:

net Neural network
wb Vector of weight and bias values

Examples

Set Network's Weights and Biases

This example shows how to set and view a network’s weight and bias values.

Create and configure a network.

[x,t] = simplefit_dataset;

net = feedforwardnet(3);

net = configure(net,x,t);

view(net)
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This network has three weights and three biases in the first layer, and three weights
and one bias in the second layer. So, the total number of weight and bias values in the
network is 10. Set the weights and biases to random values.

net = setwb(net,rand(10,1));

View the weight and bias values

net.IW{1,1}

net.b{1}

ans =

    0.1576

    0.9706

    0.9572

ans =

    0.5469

    0.9575

    0.9649

See Also
getwb | formwb | separatewb

Introduced in R2010b
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sim
Simulate neural network

Syntax

[Y,Xf,Af] = sim(net,X,Xi,Ai,T)

[Y,Xf,Af] = sim(net,{Q TS},Xi,Ai)

[Y,...] = sim(net,...,'useParallel',...)

[Y,...] = sim(net,...,'useGPU',...)

[Y,...] = sim(net,...,'showResources',...)

[Ycomposite,...] = sim(net,Xcomposite,...)

[Ygpu,...] = sim(net,Xgpu,...)

To Get Help

Type help network/sim.

Description

sim simulates neural networks.

[Y,Xf,Af] = sim(net,X,Xi,Ai,T) takes

net Network
X Network inputs
Xi Initial input delay conditions (default = zeros)
Ai Initial layer delay conditions (default = zeros)
T Network targets (default = zeros)

and returns

Y Network outputs
Xf Final input delay conditions
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Af Final layer delay conditions

sim is usually called implicitly by calling the neural network as a function. For instance,
these two expressions return the same result:

y = sim(net,x,xi,ai)

y = net(x,xi,ai)

Note that arguments Xi, Ai, Xf, and Af are optional and need only be used for networks
that have input or layer delays.

The signal arguments can have two formats: cell array or matrix.

The cell array format is easiest to describe. It is most convenient for networks with
multiple inputs and outputs, and allows sequences of inputs to be presented:

X Ni-by-TS cell
array

Each element X{i,ts} is an Ri-by-Q matrix.

Xi Ni-by-ID cell
array

Each element Xi{i,k} is an Ri-by-Q matrix.

Ai Nl-by-LD cell
array

Each element Ai{i,k} is an Si-by-Q matrix.

T No-by-TS cell
array

Each element X{i,ts} is a Ui-by-Q matrix.

Y No-by-TS cell
array

Each element Y{i,ts} is a Ui-by-Q matrix.

Xf Ni-by-ID cell
array

Each element Xf{i,k} is an Ri-by-Q matrix.

Af Nl-by-LD cell
array

Each element Af{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

No = net.numOutputs

ID = net.numInputDelays
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LD = net.numLayerDelays

TS = Number of time steps
Q = Batch size
Ri = net.inputs{i}.size

Si = net.layers{i}.size

Ui = net.outputs{i}.size

The columns of Xi, Ai, Xf, and Af are ordered from oldest delay condition to most recent:

Xi{i,k} = Input i at time ts = k - ID
Xf{i,k} = Input i at time ts = TS + k - ID
Ai{i,k} = Layer output i at time ts = k - LD
Af{i,k} = Layer output i at time ts = TS + k - LD

The matrix format can be used if only one time step is to be simulated (TS = 1). It
is convenient for networks with only one input and output, but can also be used with
networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array
argument in a single matrix:

X (sum of Ri)-by-Q matrix
Xi (sum of Ri)-by-(ID*Q) matrix
Ai (sum of Si)-by-(LD*Q) matrix
T (sum of Ui)-by-Q matrix
Y (sum of Ui)-by-Q matrix
Xf (sum of Ri)-by-(ID*Q) matrix
Af (sum of Si)-by-(LD*Q) matrix

[Y,Xf,Af] = sim(net,{Q TS},Xi,Ai) is used for networks that do not have an
input, such as Hopfield networks, when cell array notation is used.

[Y,...] = sim(net,...,'useParallel',...),
[Y,...] = sim(net,...,'useGPU',...), or [Y,...] =
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sim(net,...,'showResources',...) (or the network called as a function) accepts
optional name/value pair arguments to control how calculations are performed. Two of
these options allow training to happen faster or on larger datasets using parallel workers
or GPU devices if Parallel Computing Toolbox is available. These are the optional name/
value pairs:

'useParallel','no' Calculations occur on normal MATLAB thread. This is the default
'useParallel' setting.

'useParallel','yes' Calculations occur on parallel workers if a parallel pool is open.
Otherwise calculations occur on the normal MATLAB thread.

'useGPU','no' Calculations occur on the CPU. This is the default 'useGPU' setting.
'useGPU','yes' Calculations occur on the current gpuDevice if it is a supported GPU

(See Parallel Computing Toolbox for GPU requirements.) If the
current gpuDevice is not supported, calculations remain on the CPU.
If 'useParallel' is also 'yes' and a parallel pool is open, then
each worker with a unique GPU uses that GPU, other workers run
calculations on their respective CPU cores.

'useGPU','only' If no parallel pool is open, then this setting is the same as 'yes'.
If a parallel pool is open, then only workers with unique GPUs are
used. However, if a parallel pool is open, but no supported GPUs are
available, then calculations revert to performing on all worker CPUs.

'showResources','no' Do not display computing resources used at the command line. This is
the default setting.

'showResources','yes' Show at the command line a summary of the computing resources
actually used. The actual resources may differ from the requested
resources, if parallel or GPU computing is requested but a parallel
pool is not open or a supported GPU is not available. When parallel
workers are used, each worker’s computation mode is described,
including workers in the pool that are not used.

[Ycomposite,...] = sim(net,Xcomposite,...) takes Composite data and returns
Composite results. If Composite data is used, then 'useParallel' is automatically set
to 'yes'.

[Ygpu,...] = sim(net,Xgpu,...) takes gpuArray data and returns gpuArray
results. If gpuArray data is used, then 'useGPU' is automatically set to 'yes'.
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Examples

In the following examples, the sim function is called implicitly by calling the neural
network object (net) as a function.

Simulate Feedforward Networks

This example loads a dataset that maps anatomical measurements x to body fat
percentages t. A feedforward network with 10 neurons is created and trained on that
data, then simulated.

[x,t] =  bodyfat_dataset;

net = feedforwardnet(10);

net = train(net,x,t);

y = net(x);

Simulate NARX Time Series Networks

This example trains an open-loop nonlinear-autoregressive network with external input,
to model a levitated magnet system defined by a control current x and the magnet’s
vertical position response t, then simulates the network. The function preparets
prepares the data before training and simulation. It creates the open-loop network’s
combined inputs xo, which contains both the external input x and previous values of
position t. It also prepares the delay states xi.

[x,t] = maglev_dataset;

net = narxnet(10);

[xo,xi,~,to] = preparets(net,x,{},t);

net = train(net,xo,to,xi);

y = net(xo,xi)

This same system can also be simulated in closed-loop form.

netc = closeloop(net);

view(netc)

[xc,xi,ai,tc] = preparets(netc,x,{},t);

yc = netc(xc,xi,ai);
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Simulate in Parallel on a Parallel Pool

Parallel Computing Toolbox allows Neural Network Toolbox to simulate and train
networks faster and on larger datasets than can fit on one PC. Here training and
simulation happens across parallel MATLAB workers.

parpool

[X,T] = vinyl_dataset;

net = feedforwardnet(10);

net = train(net,X,T,'useParallel','yes','showResources','yes');

Y = net(X,'useParallel','yes');

Simulate on GPUs

Use Composite values to distribute the data manually, and get back the results as a
Composite value. If the data is loaded as it is distributed, then while each piece of the
dataset must fit in RAM, the entire dataset is limited only by the total RAM of all the
workers.

Xc = Composite;

for i=1:numel(Xc)

    Xc{i} = X+rand(size(X))*0.1;  % Use real data instead of random

end

Yc = net(Xc,'showResources','yes');

Networks can be simulated using the current GPU device, if it is supported by Parallel
Computing Toolbox.

gpuDevice % Check if there is a supported GPU

Y = net(X,'useGPU','yes','showResources','yes');

To put the data on a GPU manually, and get the results on the GPU:

Xgpu = gpuArray(X);

Ygpu = net(Xgpu,'showResources','yes');

Y = gather(Ygpu);

To run in parallel, with workers associated with unique GPUs taking advantage of that
hardware, while the rest of the workers use CPUs:

Y = net(X,'useParallel','yes','useGPU','yes','showResources','yes');

Using only workers with unique GPUs might result in higher speeds, as CPU workers
might not keep up.
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Y = net(X,'useParallel','yes','useGPU','only','showResources','yes');

Algorithms

sim uses these properties to simulate a network net.

net.numInputs, net.numLayers

net.outputConnect, net.biasConnect

net.inputConnect, net.layerConnect

These properties determine the network’s weight and bias values and the number of
delays associated with each weight:

net.IW{i,j}

net.LW{i,j}

net.b{i}

net.inputWeights{i,j}.delays

net.layerWeights{i,j}.delays

These function properties indicate how sim applies weight and bias values to inputs to
get each layer’s output:

net.inputWeights{i,j}.weightFcn

net.layerWeights{i,j}.weightFcn

net.layers{i}.netInputFcn

net.layers{i}.transferFcn

See Also
init | adapt | train | revert

Introduced before R2006a
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sim2nndata
Convert Simulink time series to neural network data

Syntax

sim2nndata(x)

Description

sim2nndata(x) takes either a column vector of values or a Simulink time series
structure and converts it to a neural network data time series.

Examples

Here a random Simulink 20-step time series is created and converted.

simts = rands(20,1);

nnts = sim2nndata(simts)

Here a similar time series is defined with a Simulink structure and converted.

simts.time = 0:19

simts.signals.values = rands(20,1);

simts.dimensions = 1;

nnts = sim2nndata(simts)

See Also
nndata | nndata2sim

Introduced in R2010b
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softmax
Soft max transfer function

Graph and Symbol

Syntax

A = softmax(N,FP)

Description

softmax is a neural transfer function. Transfer functions calculate a layer’s output from
its net input.

A = softmax(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of the softmax competitive function applied to each
column of N.

info = softmax('code') returns information about this function. The following codes
are defined:

softmax('name') returns the name of this function.
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softmax('output',FP) returns the [min max] output range.

softmax('active',FP) returns the [min max] active input range.

softmax('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or
S-by-Q.

softmax('fpnames') returns the names of the function parameters.

softmax('fpdefaults') returns the default function parameters.

Examples

Here you define a net input vector N, calculate the output, and plot both with bar graphs.

n = [0; 1; -0.5; 0.5];

a = softmax(n);

subplot(2,1,1), bar(n), ylabel('n')

subplot(2,1,2), bar(a), ylabel('a')

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'softmax';

Algorithms
a = softmax(n) = exp(n)/sum(exp(n))

See Also
sim | compet

Introduced before R2006a
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srchbac
1-D minimization using backtracking

Syntax

[a,gX,perf,retcode,delta,tol] =

srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf)

Description

srchbac is a linear search routine. It searches in a given direction to locate the
minimum of the performance function in that direction. It uses a technique called
backtracking.

[a,gX,perf,retcode,delta,tol] =

srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf) takes
these inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
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ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two

elements correspond to the number of function evaluations
in the two stages of the search. The third element is a
return code. These have different meanings for different
search algorithms. Some might not be used in this
function.

  0  Normal
  1  Minimum step taken
  2  Maximum step taken
  3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the backstepping algorithm are

alpha Scale factor that determines sufficient reduction in perf
beta Scale factor that determines sufficiently large step size
low_lim Lower limit on change in step size
up_lim Upper limit on change in step size
maxstep Maximum step length
minstep Minimum step length
scale_tol Parameter that relates the tolerance tol to the initial step size

delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See
traincgf, traincgb, traincgp, trainbfg, and trainoss.
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Dimensions for these variables are

Pd No-by-Ni-by-TS cell
array

Each element P{i,j,ts} is a Dij-by-Q
matrix.

Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q
matrix.

V Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q
matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

p = [0 1 2 3 4 5];

t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input ranges from [0 to
10]. The first layer has two tansig neurons, and the second layer has one logsig
neuron. The traincgf network training function and the srchbac search function are
to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');

a = sim(net,p)
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Train and Retest the Network

net.trainParam.searchFcn = 'srchbac';

net.trainParam.epochs = 50;

net.trainParam.show = 10;

net.trainParam.goal = 0.1;

net = train(net,p,t);

a = sim(net,p)

Network Use

You can create a standard network that uses srchbac with newff, newcf, or newelm.

To prepare a custom network to be trained with traincgf, using the line search
function srchbac,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s
default parameters.

2 Set net.trainParam.searchFcn to 'srchbac'.

The srchbac function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

Backtracking Search

The backtracking search routine srchbac is best suited to use with the quasi-Newton
optimization algorithms. It begins with a step multiplier of 1 and then backtracks until
an acceptable reduction in the performance is obtained. On the first step it uses the value
of performance at the current point and a step multiplier of 1. It also uses the value of
the derivative of performance at the current point to obtain a quadratic approximation
to the performance function along the search direction. The minimum of the quadratic
approximation becomes a tentative optimum point (under certain conditions) and the
performance at this point is tested. If the performance is not sufficiently reduced, a cubic
interpolation is obtained and the minimum of the cubic interpolation becomes the new
tentative optimum point. This process is continued until a sufficient reduction in the
performance is obtained.
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The backtracking algorithm is described in Dennis and Schnabel. It is used as the default
line search for the quasi-Newton algorithms, although it might not be the best technique
for all problems.

Algorithms

srchbac locates the minimum of the performance function in the search direction
dX, using the backtracking algorithm described on page 126 and 328 of Dennis and
Schnabel’s book, noted below.

References

Dennis, J.E., and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Englewood Cliffs, NJ, Prentice-Hall, 1983

See Also
srchcha | srchgol | srchhyb

Introduced before R2006a
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srchbre
1-D interval location using Brent’s method

Syntax

[a,gX,perf,retcode,delta,tol] =

srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description

srchbre is a linear search routine. It searches in a given direction to locate the
minimum of the performance function in that direction. It uses a technique called Brent’s
technique.

[a,gX,perf,retcode,delta,tol] =

srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes
these inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
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ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two

elements correspond to the number of function evaluations
in the two stages of the search. The third element is a
return code. These have different meanings for different
search algorithms. Some might not be used in this
function.

  0  Normal
  1  Minimum step taken
  2  Maximum step taken
  3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the Brent algorithm are

alpha Scale factor that determines sufficient reduction in perf
beta Scale factor that determines sufficiently large step size
bmax Largest step size
scale_tol Parameter that relates the tolerance tol to the initial step size

delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See
traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell
array

Each element P{i,j,ts} is a Dij-by-Q
matrix.
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Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q
matrix.

Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q
matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

p = [0 1 2 3 4 5];

t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input ranges from [0 to
10]. The first layer has two tansig neurons, and the second layer has one logsig
neuron. The traincgf network training function and the srchbac search function are
to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');

a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchbre';

net.trainParam.epochs = 50;

1-433



1 Functions — Alphabetical List

net.trainParam.show = 10;

net.trainParam.goal = 0.1;

net = train(net,p,t);

a = sim(net,p)

Network Use

You can create a standard network that uses srchbre with newff, newcf, or newelm.
To prepare a custom network to be trained with traincgf, using the line search
function srchbre,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s
default parameters.

2 Set net.trainParam.searchFcn to 'srchbre'.

The srchbre function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

Brent’s Search

Brent’s search is a linear search that is a hybrid of the golden section search and a
quadratic interpolation. Function comparison methods, like the golden section search,
have a first-order rate of convergence, while polynomial interpolation methods have
an asymptotic rate that is faster than superlinear. On the other hand, the rate of
convergence for the golden section search starts when the algorithm is initialized,
whereas the asymptotic behavior for the polynomial interpolation methods can take
many iterations to become apparent. Brent’s search attempts to combine the best
features of both approaches.

For Brent’s search, you begin with the same interval of uncertainty used with the golden
section search, but some additional points are computed. A quadratic function is then
fitted to these points and the minimum of the quadratic function is computed. If this
minimum is within the appropriate interval of uncertainty, it is used in the next stage of
the search and a new quadratic approximation is performed. If the minimum falls outside
the known interval of uncertainty, then a step of the golden section search is performed.
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See [Bren73] for a complete description of this algorithm. This algorithm has the
advantage that it does not require computation of the derivative. The derivative
computation requires a backpropagation through the network, which involves more
computation than a forward pass. However, the algorithm can require more performance
evaluations than algorithms that use derivative information.

Algorithms

srchbre brackets the minimum of the performance function in the search direction
dX, using Brent’s algorithm, described on page 46 of Scales (see reference below). It is a
hybrid algorithm based on the golden section search and the quadratic approximation.

References

Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
srchbac | srchcha | srchgol | srchhyb

Introduced before R2006a
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srchcha
1-D minimization using Charalambous' method

Syntax
[a,gX,perf,retcode,delta,tol] =

srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description
srchcha is a linear search routine. It searches in a given direction to locate the
minimum of the performance function in that direction. It uses a technique based on
Charalambous’ method.

[a,gX,perf,retcode,delta,tol] =

srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes
these inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
ch_perf Change in performance on previous step
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and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two

elements correspond to the number of function evaluations
in the two stages of the search. The third element is a
return code. These have different meanings for different
search algorithms. Some might not be used in this
function.

  0  Normal
  1  Minimum step taken
  2  Maximum step taken
  3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the Charalambous algorithm are

alpha Scale factor that determines sufficient reduction in perf
beta Scale factor that determines sufficiently large step size
gama Parameter to avoid small reductions in performance, usually set to

0.1
scale_tol Parameter that relates the tolerance tol to the initial step size

delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See
traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell
array

Each element P{i,j,ts} is a Dij-by-Q
matrix.

Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q
matrix.
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Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q
matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

p = [0 1 2 3 4 5];

t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input ranges from [0 to
10]. The first layer has two tansig neurons, and the second layer has one logsig
neuron. The traincgf network training function and the srchcha search function are
to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');

a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchcha';

net.trainParam.epochs = 50;

net.trainParam.show = 10;

net.trainParam.goal = 0.1;

net = train(net,p,t);

1-438



 srchcha

a = sim(net,p)

Network Use

You can create a standard network that uses srchcha with newff, newcf, or newelm.

To prepare a custom network to be trained with traincgf, using the line search
function srchcha,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s
default parameters.

2 Set net.trainParam.searchFcn to 'srchcha'.

The srchcha function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

Charalambous’ Search

The method of Charalambous, srchcha, was designed to be used in combination with a
conjugate gradient algorithm for neural network training. Like srchbre and srchhyb, it
is a hybrid search. It uses a cubic interpolation together with a type of sectioning.

See [Char92] for a description of Charalambous' search. This routine is used as the
default search for most of the conjugate gradient algorithms because it appears to
produce excellent results for many different problems. It does require the computation of
the derivatives (backpropagation) in addition to the computation of performance, but it
overcomes this limitation by locating the minimum with fewer steps. This is not true for
all problems, and you might want to experiment with other line searches.

Algorithms

srchcha locates the minimum of the performance function in the search direction dX,
using an algorithm based on the method described in Charalambous (see reference
below).
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References

Charalambous, C., “Conjugate gradient algorithm for efficient training of artificial neural
networks,” IEEE Proceedings, Vol. 139, No. 3, June, 1992, pp. 301–310.

See Also
srchbac | srchbre | srchgol | srchhyb

Introduced before R2006a
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srchgol
1-D minimization using golden section search

Syntax

[a,gX,perf,retcode,delta,tol] =

srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description

srchgol is a linear search routine. It searches in a given direction to locate the
minimum of the performance function in that direction. It uses a technique called the
golden section search.

[a,gX,perf,retcode,delta,tol] =

srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes
these inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
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ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two

elements correspond to the number of function
evaluations in the two stages of the search. The third
element is a return code. These have different meanings
for different search algorithms. Some might not be used
in this function.

  0  Normal
  1  Minimum step taken
  2  Maximum step taken
  3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the golden section algorithm are

alpha Scale factor that determines sufficient reduction in perf
bmax Largest step size
scale_tol Parameter that relates the tolerance tol to the initial step size

delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See
traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell
array

Each element P{i,j,ts} is a Dij-by-Q
matrix.

Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q
matrix.
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Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q
matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

p = [0 1 2 3 4 5];

t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input ranges from [0 to
10]. The first layer has two tansig neurons, and the second layer has one logsig
neuron. The traincgf network training function and the srchgol search function are
to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');

a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchgol';

net.trainParam.epochs = 50;

net.trainParam.show = 10;

net.trainParam.goal = 0.1;
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net = train(net,p,t);

a = sim(net,p)

Network Use

You can create a standard network that uses srchgol with newff, newcf, or newelm.

To prepare a custom network to be trained with traincgf, using the line search
function srchgol,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s
default parameters.

2 Set net.trainParam.searchFcn to 'srchgol'.

The srchgol function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

Golden Section Search

The golden section search srchgol is a linear search that does not require the
calculation of the slope. This routine begins by locating an interval in which the
minimum of the performance function occurs. This is accomplished by evaluating the
performance at a sequence of points, starting at a distance of delta and doubling in
distance each step, along the search direction. When the performance increases between
two successive iterations, a minimum has been bracketed. The next step is to reduce
the size of the interval containing the minimum. Two new points are located within the
initial interval. The values of the performance at these two points determine a section
of the interval that can be discarded, and a new interior point is placed within the new
interval. This procedure is continued until the interval of uncertainty is reduced to a
width of tol, which is equal to delta/scale_tol.

See [HDB96], starting on page 12-16, for a complete description of the golden section
search. Try the Neural Network Design demonstration nnd12sd1 [HDB96] for an
illustration of the performance of the golden section search in combination with a
conjugate gradient algorithm.

1-444



 srchgol

Algorithms

srchgol locates the minimum of the performance function in the search direction dX,
using the golden section search. It is based on the algorithm as described on page 33 of
Scales (see reference below).

References

Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
srchbac | srchbre | srchcha | srchhyb

Introduced before R2006a
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srchhyb
1-D minimization using a hybrid bisection-cubic search

Syntax
[a,gX,perf,retcode,delta,tol] =

srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description
srchhyb is a linear search routine. It searches in a given direction to locate the
minimum of the performance function in that direction. It uses a technique that is a
combination of a bisection and a cubic interpolation.

[a,gX,perf,retcode,delta,tol] =

srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes
these inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
ch_perf Change in performance on previous step
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and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two

elements correspond to the number of function evaluations
in the two stages of the search. The third element is a
return code. These have different meanings for different
search algorithms. Some might not be used in this
function.

  0  Normal
  1  Minimum step taken
  2  Maximum step taken
  3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the hybrid bisection-cubic algorithm are

alpha Scale factor that determines sufficient reduction in perf
beta Scale factor that determines sufficiently large step size
bmax Largest step size
scale_tol Parameter that relates the tolerance tol to the initial step size

delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See
traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell
array

Each element P{i,j,ts} is a Dij-by-Q
matrix.

Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q
matrix.
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Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q
matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

p = [0 1 2 3 4 5];

t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input ranges from [0 to
10]. The first layer has two tansig neurons, and the second layer has one logsig
neuron. The traincgf network training function and the srchhyb search function are
to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');

a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchhyb';

net.trainParam.epochs = 50;

net.trainParam.show = 10;

net.trainParam.goal = 0.1;

net = train(net,p,t);

a = sim(net,p)
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Network Use

You can create a standard network that uses srchhyb with newff, newcf, or newelm.

To prepare a custom network to be trained with traincgf, using the line search
function srchhyb,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s
default parameters.

2 Set net.trainParam.searchFcn to 'srchhyb'.

The srchhyb function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

Hybrid Bisection Cubic Search

Like Brent’s search, srchhyb is a hybrid algorithm. It is a combination of bisection
and cubic interpolation. For the bisection algorithm, one point is located in the interval
of uncertainty, and the performance and its derivative are computed. Based on this
information, half of the interval of uncertainty is discarded. In the hybrid algorithm, a
cubic interpolation of the function is obtained by using the value of the performance and
its derivative at the two endpoints. If the minimum of the cubic interpolation falls within
the known interval of uncertainty, then it is used to reduce the interval of uncertainty.
Otherwise, a step of the bisection algorithm is used.

See [Scal85] for a complete description of the hybrid bisection-cubic search. This
algorithm does require derivative information, so it performs more computations at each
step of the algorithm than the golden section search or Brent’s algorithm.

Algorithms

srchhyb locates the minimum of the performance function in the search direction dX,
using the hybrid bisection-cubic interpolation algorithm described on page 50 of Scales
(see reference below).
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References

Scales, L.E., Introduction to Non-Linear Optimization, New York Springer-Verlag, 1985

See Also
srchbac | srchbre | srchcha | srchgol

Introduced before R2006a
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sse
Sum squared error performance function

Syntax

perf = sse(net,t,y,ew)

[...] = sse(...,'regularization',regularization)

[...] = sse(...,'normalization',normalization)

[...] = sse(...,'squaredWeighting',squaredWeighting)

[...] = sse(...,FP)

Description

sse is a network performance function. It measures performance according to the sum of
squared errors.

perf = sse(net,t,y,ew) takes these input arguments and optional function
parameters,

net Neural network
t Matrix or cell array of target vectors
y Matrix or cell array of output vectors
ew Error weights (default = {1})

and returns the sum squared error.

This function has three optional function parameters which can be defined with
parameter name/pair arguments, or as a structure FP argument with fields having the
parameter name and assigned the parameter values.

[...] = sse(...,'regularization',regularization)

[...] = sse(...,'normalization',normalization)

[...] = sse(...,'squaredWeighting',squaredWeighting)

1-451



1 Functions — Alphabetical List

[...] = sse(...,FP)

• regularization — can be set to any value between the default of 0 and 1. The
greater the regularization value, the more squared weights and biases are taken into
account in the performance calculation.

• normalization — can be set to the default 'absolute', or 'normalized' (which
normalizes errors to the [+2 -2] range consistent with normalized output and target
ranges of [-1 1]) or 'percent' (which normalizes errors to the range [-1 +1]).

• squaredWeighting — can be set to the default true, for applying error weights
to squared errors; or false for applying error weights to the absolute errors before
squaring.

Examples

Here a network is trained to fit a simple data set and its performance calculated

[x,t] = simplefit_dataset;

net = fitnet(10);

net.performFcn = 'sse';

net = train(net,x,t)

y = net(x)

e = t-y

perf = sse(net,t,y)

Network Use

To prepare a custom network to be trained with sse, set net.performFcn to 'sse'.
This automatically sets net.performParam to the default function parameters.

Then calling train, adapt or perform will result in sse being used to calculate
performance.

Introduced before R2006a
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staticderiv
Static derivative function

Syntax

staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW)

staticderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description

This function calculates derivatives using the chain rule from the networks performance
or outputs back to its inputs. For time series data and dynamic networks this function
ignores the delay connections resulting in a approximation (which may be good or
not) of the actual derivative. This function is used by Elman networks (elmannet)
which is a dynamic network trained by the static derivative approximation when full
derivative calculations are not available. As full derivatives are calculated by all the
other derivative functions, this function is not recommended for dynamic networks except
for research into training algorithms.

staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and
biases, where R and S are the number of input and output elements and Q is the number
of samples (and N and M are the number of input and output signals, Ri and Si are the
number of each input and outputs elements, and TS is the number of timesteps).

staticderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with
respect to the network’s weights and biases.
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Examples

Here a feedforward network is trained and both the gradient and Jacobian are
calculated.

[x,t] = simplefit_dataset;

net = feedforwardnet(20);

net = train(net,x,t);

y = net(x);

perf = perform(net,t,y);

gwb = staticderiv('dperf_dwb',net,x,t)

jwb = staticderiv('de_dwb',net,x,t)

See Also
bttderiv | defaultderiv | fpderiv | num2deriv

Introduced in R2010b
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sumabs
Sum of absolute elements of matrix or matrices

Syntax

[s,n] = sumabs(x)

Description

[s,n] = sumabs(x) takes a matrix or cell array of matrices and returns,

s Sum of all absolute finite values
n Number of finite values

If x contains no finite values, the sum returned is 0.

Examples
m = sumabs([1 2;3 4])

[m,n] = sumabs({[1 2; NaN 4], [4 5; 2 3]})

See Also
meanabs | meansqr | sumsqr

Introduced in R2010b
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sumsqr
Sum of squared elements of matrix or matrices

Syntax

[s,n] = sumsqr(x)

Description

[s,n] = sumsqr(x) takes a matrix or cell array of matrices and returns,

s Sum of all squared finite values
n Number of finite values

If x contains no finite values, the sum returned is 0.

Examples
m = sumsqr([1 2;3 4])

[m,n] = sumsqr({[1 2; NaN 4], [4 5; 2 3]})

See Also
meanabs | meansqr | sumabs

Introduced before R2006a
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tansig
Hyperbolic tangent sigmoid transfer function

Graph and Symbol

Syntax

A = tansig(N,FP)

Description

tansig is a neural transfer function. Transfer functions calculate a layer’s output from
its net input.

A = tansig(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements squashed into [-1 1].

Examples

Here is the code to create a plot of the tansig transfer function.
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n = -5:0.1:5;

a = tansig(n);

plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'tansig';

Algorithms
a = tansig(n) = 2/(1+exp(-2*n))-1

This is mathematically equivalent to tanh(N). It differs in that it runs faster than
the MATLAB implementation of tanh, but the results can have very small numerical
differences. This function is a good tradeoff for neural networks, where speed is
important and the exact shape of the transfer function is not.

References

Vogl, T.P., J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon, “Accelerating the
convergence of the backpropagation method,” Biological Cybernetics, Vol. 59, 1988, pp.
257–263

See Also
sim | logsig

Introduced before R2006a
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tapdelay
Shift neural network time series data for tap delay

Syntax

tapdelay(x,i,ts,delays)

Description

tapdelay(x,i,ts,delays) takes these arguments,

x Neural network time series data
i Signal index
ts Timestep index
delays Row vector of increasing zero or positive delays

and returns the tap delay values of signal i at timestep ts given the specified tap delays.

Examples

Here a random signal x consisting of eight timesteps is defined, and a tap delay with
delays of [0 1 4] is simulated at timestep 6.

x = num2cell(rand(1,8));

y = tapdelay(x,1,6,[0 1 4])

See Also
nndata | extendts | preparets

Introduced in R2010b
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timedelaynet
Time delay neural network

Syntax

timedelaynet(inputDelays,hiddenSizes,trainFcn)

Description

Time delay networks are similar to feedforward networks, except that the input weight
has a tap delay line associated with it. This allows the network to have a finite dynamic
response to time series input data. This network is also similar to the distributed delay
neural network (distdelaynet), which has delays on the layer weights in addition to
the input weight.

timedelaynet(inputDelays,hiddenSizes,trainFcn) takes these arguments,

inputDelays Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns a time delay neural network.

Examples

Time Delay Network

Here a time delay neural network is used to solve a simple time series problem.

[X,T] = simpleseries_dataset;

net = timedelaynet(1:2,10);

[Xs,Xi,Ai,Ts] = preparets(net,X,T);

net = train(net,Xs,Ts,Xi,Ai);

view(net)
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Y = net(Xs,Xi,Ai);

perf = perform(net,Ts,Y)

perf =

    0.0225

See Also
preparets | removedelay | distdelaynet | narnet | narxnet

Introduced in R2010b
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tonndata

Convert data to standard neural network cell array form

Syntax

[y,wasMatrix] = tonndata(x,columnSamples,cellTime)

Description

[y,wasMatrix] = tonndata(x,columnSamples,cellTime) takes these arguments,

x Matrix or cell array of matrices
columnSamples True if original samples are oriented as columns, false if rows
cellTime True if original samples are columns of a cell array, false if

they are stored in a matrix

and returns

y Original data transformed into standard neural network cell
array form

wasMatrix True if original data was a matrix (as apposed to cell array)

If columnSamples is false, then matrix x or matrices in cell array x will be transposed,
so row samples will now be stored as column vectors.

If cellTime is false, then matrix samples will be separated into columns of a cell array
so time originally represented as vectors in a matrix will now be represented as columns
of a cell array.

The returned value wasMatrix can be used by fromnndata to reverse the
transformation.
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Examples

Here data consisting of six timesteps of 5-element vectors, originally represented as a
matrix with six columns, is converted to standard neural network representation and
back.

x = rands(5,6)

columnSamples = true; % samples are by columns.

cellTime = false;     % time-steps in matrix, not cell array.

[y,wasMatrix] = tonndata(x,columnSamples,cellTime)

x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)

See Also
nndata | fromnndata | nndata2sim | sim2nndata

Introduced in R2010b
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train

Train neural network

For deep learning with convolutional neural networks, see trainNetwork instead.

Syntax

[net,tr] = train(net,X,T,Xi,Ai,EW)

[net, ___ ] = train( ___ ,'useParallel', ___ )

[net, ___ ] = train( ___ ,'useGPU', ___ )

[net, ___ ] = train( ___ ,'showResources', ___ )

[net, ___ ] = train(Xcomposite,Tcomposite, ___ )

[net, ___ ] = train(Xgpu,Tgpu, ___ )

net = train( ___ ,'CheckpointFile','path/

name','CheckpointDelay',numDelays)

Description

train trains a network net according to net.trainFcn and net.trainParam.

[net,tr] = train(net,X,T,Xi,Ai,EW) takes

net Network
X Network inputs
T Network targets (default = zeros)
Xi Initial input delay conditions (default = zeros)
Ai Initial layer delay conditions (default = zeros)
EW Error weights

and returns

net Newly trained network
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tr Training record (epoch and perf)

Note that T is optional and need only be used for networks that require targets. Xi is also
optional and need only be used for networks that have input or layer delays.

train arguments can have two formats: matrices, for static problems and networks
with single inputs and outputs, and cell arrays for multiple timesteps and networks with
multiple inputs and outputs.

The matrix format is as follows:

X R-by-Q matrix
T U-by-Q matrix

The cell array format is more general, and more convenient for networks with multiple
inputs and outputs, allowing sequences of inputs to be presented.

X Ni-by-TS cell array Each element X{i,ts} is an Ri-by-Q
matrix.

T No-by-TS cell array Each element T{i,ts} is a Ui-by-Q
matrix.

Xi Ni-by-ID cell array Each element Xi{i,k} is an Ri-by-Q
matrix.

Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q
matrix.

EW No-by-TS cell array Each element EW{i,ts} is a Ui-by-Q
matrix

where

Ni = net.numInputs

Nl = net.numLayers

No = net.numOutputs

ID = net.numInputDelays
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LD = net.numLayerDelays

TS = Number of time steps
Q = Batch size
Ri = net.inputs{i}.size

Si = net.layers{i}.size

Ui = net.outptus{i}.size

The columns of Xi and Ai are ordered from the oldest delay condition to the most recent:

Xi{i,k} = Input i at time ts = k - ID
Ai{i,k} = Layer output i at time ts = k - LD

The error weights EW can also have a size of 1 in place of all or any of No, TS, Ui or Q. In
that case, EW is automatically dimension extended to match the targets T. This allows
for conveniently weighting the importance in any dimension (such as per sample) while
having equal importance across another (such as time, with TS=1). If all dimensions are
1, for instance if EW = {1}, then all target values are treated with the same importance.
That is the default value of EW.

The matrix format can be used if only one time step is to be simulated (TS = 1). It is
convenient for networks with only one input and output, but can be used with networks
that have more.

Each matrix argument is found by storing the elements of the corresponding cell array
argument in a single matrix:

X (sum of Ri)-by-Q matrix
T (sum of Ui)-by-Q matrix
Xi (sum of Ri)-by-(ID*Q) matrix
Ai (sum of Si)-by-(LD*Q) matrix
EW (sum of Ui)-by-Q matrix

As noted above, the error weights EW can be of the same dimensions as the targets T,
or have some dimensions set to 1. For instance if EW is 1-by-Q, then target samples will
have different importances, but each element in a sample will have the same importance.
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If EW is (sum of Ui)-by-Q, then each output element has a different importance, with all
samples treated with the same importance.

The training record TR is a structure whose fields depend on the network training
function (net.NET.trainFcn). It can include fields such as:

• Training, data division, and performance functions and parameters
• Data division indices for training, validation and test sets
• Data division masks for training validation and test sets
• Number of epochs (num_epochs) and the best epoch (best_epoch).
• A list of training state names (states).
• Fields for each state name recording its value throughout training
• Performances of the best network (best_perf, best_vperf, best_tperf)

[net, ___ ] = train( ___ ,'useParallel', ___ ),
[net, ___ ] = train( ___ ,'useGPU', ___ ), or [net, ___ ] =
train( ___ ,'showResources', ___ ) accepts optional name/value pair arguments
to control how calculations are performed. Two of these options allow training to happen
faster or on larger datasets using parallel workers or GPU devices if Parallel Computing
Toolbox is available. These are the optional name/value pairs:

'useParallel','no' Calculations occur on normal MATLAB thread. This is the default
'useParallel' setting.

'useParallel','yes' Calculations occur on parallel workers if a parallel pool is open.
Otherwise calculations occur on the normal MATLAB thread.

'useGPU','no' Calculations occur on the CPU. This is the default 'useGPU' setting.
'useGPU','yes' Calculations occur on the current gpuDevice if it is a supported GPU

(See Parallel Computing Toolbox for GPU requirements.) If the
current gpuDevice is not supported, calculations remain on the CPU.
If 'useParallel' is also 'yes' and a parallel pool is open, then
each worker with a unique GPU uses that GPU, other workers run
calculations on their respective CPU cores.

'useGPU','only' If no parallel pool is open, then this setting is the same as 'yes'.
If a parallel pool is open then only workers with unique GPUs are
used. However, if a parallel pool is open, but no supported GPUs are
available, then calculations revert to performing on all worker CPUs.
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'showResources','no' Do not display computing resources used at the command line. This is
the default setting.

'showResources','yes' Show at the command line a summary of the computing resources
actually used. The actual resources may differ from the requested
resources, if parallel or GPU computing is requested but a parallel
pool is not open or a supported GPU is not available. When parallel
workers are used, each worker’s computation mode is described,
including workers in the pool that are not used.

'reduction',N For most neural networks, the default CPU training computation
mode is a compiled MEX algorithm. However, for large networks the
calculations might occur with a MATLAB calculation mode. This can
be confirmed using 'showResources'. If MATLAB is being used and
memory is an issue, setting the reduction option to a value N greater
than 1, reduces much of the temporary storage required to train by a
factor of N, in exchange for longer training times.

[net, ___ ] = train(Xcomposite,Tcomposite, ___ ) takes Composite data
and returns Composite results. If Composite data is used, then 'useParallel' is
automatically set to 'yes'.

[net, ___ ] = train(Xgpu,Tgpu, ___ ) takes gpuArray data and returns gpuArray
results. If gpuArray data is used, then 'useGPU' is automatically set to 'yes'.

net = train( ___ ,'CheckpointFile','path/

name','CheckpointDelay',numDelays) periodically saves intermediate values of
the neural network and training record during training to the specified file. This protects
training results from power failures, computer lock ups, Ctrl+C, or any other event that
halts the training process before train returns normally.

The value for 'CheckpointFile' can be set to a filename to save in the current
working folder, to a file path in another folder, or to an empty string to disable
checkpoint saves (the default value).

The optional parameter 'CheckpointDelay' limits how often saves happen. Limiting
the frequency of checkpoints can improve efficiency by keeping the amount of time saving
checkpoints low compared to the time spent in calculations. It has a default value of 60,
which means that checkpoint saves do not happen more than once per minute. Set the
value of 'CheckpointDelay' to 0 if you want checkpoint saves to occur only once every
epoch.

1-468



 train

Note Any NaN values in the inputs X or the targets T, are treated as missing data. If a
column of X or T contains at least one NaN, that column is not used for training, testing,
or validation.

Examples

Train and Plot Networks

Here input x and targets t define a simple function that you can plot:

x = [0 1 2 3 4 5 6 7 8];

t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];

plot(x,t,'o')

Here feedforwardnet creates a two-layer feed-forward network. The network has one
hidden layer with ten neurons.

net = feedforwardnet(10);

net = configure(net,x,t);

y1 = net(x)

plot(x,t,'o',x,y1,'x')

The network is trained and then resimulated.

net = train(net,x,t);

y2 = net(x)

plot(x,t,'o',x,y1,'x',x,y2,'*')

Train NARX Time Series Network

This example trains an open-loop nonlinear-autoregressive network with external input,
to model a levitated magnet system defined by a control current x and the magnet’s
vertical position response t, then simulates the network. The function preparets
prepares the data before training and simulation. It creates the open-loop network’s
combined inputs xo, which contains both the external input x and previous values of
position t. It also prepares the delay states xi.

[x,t] = maglev_dataset;

net = narxnet(10);

[xo,xi,~,to] = preparets(net,x,{},t);
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net = train(net,xo,to,xi);

y = net(xo,xi)

This same system can also be simulated in closed-loop form.

netc = closeloop(net);

view(netc)

[xc,xi,ai,tc] = preparets(netc,x,{},t);

yc = netc(xc,xi,ai);

Train a Network in Parallel on a Parallel Pool

Parallel Computing Toolbox allows Neural Network Toolbox to simulate and train
networks faster and on larger datasets than can fit on one PC. Parallel training is
currently supported for backpropagation training only, not for self-organizing maps.

Here training and simulation happens across parallel MATLAB workers.

parpool

[X,T] = vinyl_dataset;

net = feedforwardnet(10);

net = train(net,X,T,'useParallel','yes','showResources','yes');

Y = net(X); 

Use Composite values to distribute the data manually, and get back the results as a
Composite value. If the data is loaded as it is distributed then while each piece of the
dataset must fit in RAM, the entire dataset is limited only by the total RAM of all the
workers.

[X,T] = vinyl_dataset;

Q = size(X,2);

Xc = Composite;

Tc = Composite;

numWorkers = numel(Xc);

ind = [0 ceil((1:4)*(Q/4))];

for i=1:numWorkers

    indi = (ind(i)+1):ind(i+1);

    Xc{i} = X(:,indi);

    Tc{i} = T(:,indi);

end

net = feedforwardnet;

net = configure(net,X,T);

net = train(net,Xc,Tc);
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Yc = net(Xc);

Note in the example above the function configure was used to set the dimensions and
processing settings of the network's inputs. This normally happens automatically when
train is called, but when providing composite data this step must be done manually with
non-Composite data.

Train a Network on GPUs

Networks can be trained using the current GPU device, if it is supported by Parallel
Computing Toolbox. GPU training is currently supported for backpropagation training
only, not for self-organizing maps.

[X,T] = vinyl_dataset;

net = feedforwardnet(10);

net = train(net,X,T,'useGPU','yes');

y = net(X); 

To put the data on a GPU manually:

[X,T] = vinyl_dataset;

Xgpu = gpuArray(X);

Tgpu = gpuArray(T);

net = configure(net,X,T);

net = train(net,Xgpu,Tgpu);

Ygpu = net(Xgpu);

Y = gather(Ygpu); 

Note in the example above the function configure was used to set the dimensions and
processing settings of the network's inputs. This normally happens automatically when
train is called, but when providing gpuArray data this step must be done manually with
non-gpuArray data.

To run in parallel, with workers each assigned to a different unique GPU, with extra
workers running on CPU:

net = train(net,X,T,'useParallel','yes','useGPU','yes');

y = net(X);

Using only workers with unique GPUs might result in higher speed, as CPU workers
might not keep up.

net = train(net,X,T,'useParallel','yes','useGPU','only');
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Y = net(X);

Train Network Using Checkpoint Saves

Here a network is trained with checkpoints saved at a rate no greater than once every
two minutes.
[x,t] = vinyl_dataset;

net = fitnet([60 30]);

net = train(net,x,t,'CheckpointFile','MyCheckpoint','CheckpointDelay',120);

After a computer failure, the latest network can be recovered and used to continue
training from the point of failure. The checkpoint file includes a structure variable
checkpoint, which includes the network, training record, filename, time, and number.

[x,t] = vinyl_dataset;

load MyCheckpoint

net = checkpoint.net;

net = train(net,x,t,'CheckpointFile','MyCheckpoint');

Another use for the checkpoint feature is when you stop a parallel training session
(started with the 'UseParallel' parameter) even though the Neural Network Training
Tool is not available during parallel training. In this case, set a 'CheckpointFile', use
Ctrl+C to stop training any time, then load your checkpoint file to get the network and
training record.

Algorithms

train calls the function indicated by net.trainFcn, using the training parameter
values indicated by net.trainParam.

Typically one epoch of training is defined as a single presentation of all input vectors
to the network. The network is then updated according to the results of all those
presentations.

Training occurs until a maximum number of epochs occurs, the performance goal is met,
or any other stopping condition of the function net.trainFcn occurs.

Some training functions depart from this norm by presenting only one input vector (or
sequence) each epoch. An input vector (or sequence) is chosen randomly for each epoch
from concurrent input vectors (or sequences). competlayer returns networks that use
trainru, a training function that does this.
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See Also
init | revert | sim | adapt

Introduced before R2006a
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trainb

Batch training with weight and bias learning rules

Syntax

net.trainFcn = 'trainb'

[net,tr] = train(net,...)

Description

trainb is not called directly. Instead it is called by train for networks whose
net.trainFcn property is set to 'trainb', thus:

net.trainFcn = 'trainb' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainb.

trainb trains a network with weight and bias learning rules with batch updates. The
weights and biases are updated at the end of an entire pass through the input data.

Training occurs according to trainb’s training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.min_grad 1e-6 Minimum performance gradient
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLinefalse Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds
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Network Use

You can create a standard network that uses trainb by calling linearlayer.

To prepare a custom network to be trained with trainb,

1 Set net.trainFcn to 'trainb'. This sets net.trainParam to trainb’s default
parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set
each net.layerWeights{i,j}.learnFcn to a learning function. Set each
net.biases{i}.learnFcn to a learning function. (Weight and bias learning
parameters are automatically set to default values for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.

Algorithms

Each weight and bias is updated according to its learning function after each epoch (one
pass through the entire set of input vectors).

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• Performance is minimized to the goal.
• The maximum amount of time is exceeded.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

See Also
linearlayer | train

Introduced before R2006a
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trainbfg
BFGS quasi-Newton backpropagation

Syntax
net.trainFcn = 'trainbfg'

[net,tr] = train(net,...)

Description
trainbfg is a network training function that updates weight and bias values according
to the BFGS quasi-Newton method.

net.trainFcn = 'trainbfg' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainbfg.

Training occurs according to trainbfg training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.showWindow true Show training window
net.trainParam.show 25 Epochs between displays (NaN for no

displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-6 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.searchFcn 'srchbac' Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear
search.
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net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in
perf

net.trainParam.beta 0.1 Scale factor that determines sufficiently large step
size

net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
net.trainParam.bmax 26 Maximum step size
net.trainParam.batch_frag 0 In case of multiple batches, they are considered

independent. Any nonzero value implies a
fragmented batch, so the final layer’s conditions of a
previous trained epoch are used as initial conditions
for the next epoch.

Network Use
You can create a standard network that uses trainbfg with feedfowardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainbfg:

1 Set NET.trainFcn to 'trainbfg'. This sets NET.trainParam to trainbfg’s
default parameters.

2 Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
trainbfg.

Examples
Train Neural Network Using trainbfg Train Function

This example shows how to train a neural network using the trainbfg train function.
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Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;

net = feedforwardnet(10, 'trainbfg');

net = train(net, x, t);

y = net(x);

Definitions

BFGS Quasi-Newton Backpropagation

Newton’s method is an alternative to the conjugate gradient methods for fast
optimization. The basic step of Newton’s method is

x x A gk k k k+

-
= -

1

1

where Ak
-1  is the Hessian matrix (second derivatives) of the performance index at the

current values of the weights and biases. Newton’s method often converges faster than
conjugate gradient methods. Unfortunately, it is complex and expensive to compute the
Hessian matrix for feedforward neural networks. There is a class of algorithms that is
based on Newton’s method, but which does not require calculation of second derivatives.
These are called quasi-Newton (or secant) methods. They update an approximate
Hessian matrix at each iteration of the algorithm. The update is computed as a function
of the gradient. The quasi-Newton method that has been most successful in published
studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update. This algorithm is
implemented in the trainbfg routine.

The BFGS algorithm is described in [DeSc83]. This algorithm requires more computation
in each iteration and more storage than the conjugate gradient methods, although it
generally converges in fewer iterations. The approximate Hessian must be stored, and its
dimension is n x n, where n is equal to the number of weights and biases in the network.
For very large networks it might be better to use Rprop or one of the conjugate gradient
algorithms. For smaller networks, however, trainbfg can be an efficient training
function.
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Algorithms

trainbfg can train any network as long as its weight, net input, and transfer functions
have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the
weight and bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the
performance along the search direction. The line search function searchFcn is used to
locate the minimum point. The first search direction is the negative of the gradient of
performance. In succeeding iterations the search direction is computed according to the
following formula:

dX = -H\gX;

where gX is the gradient and H is a approximate Hessian matrix. See page 119 of Gill,
Murray, and Wright (Practical Optimization, 1981) for a more detailed discussion of the
BFGS quasi-Newton method.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

References

Gill, Murray, & Wright, Practical Optimization, 1981

See Also
cascadeforwardnet | traingdm | traingda | traingdx | trainlm | trainrp |
traincgf | traincgb | trainscg | traincgp | trainoss | feedforwardnet
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Introduced before R2006a
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trainbfgc
BFGS quasi-Newton backpropagation for use with NN model reference adaptive
controller

Syntax

[net,TR,Y,E,Pf,Af,flag_stop] = trainbfgc(net,P,T,Pi,Ai,epochs,TS,Q)

info = trainbfgc(code)

Description

trainbfgc is a network training function that updates weight and bias values according
to the BFGS quasi-Newton method. This function is called from nnmodref, a GUI for the
model reference adaptive control Simulink block.

[net,TR,Y,E,Pf,Af,flag_stop] = trainbfgc(net,P,T,Pi,Ai,epochs,TS,Q)

takes these inputs,

net Neural network
P Delayed input vectors
T Layer target vectors
Pi Initial input delay conditions
Ai Initial layer delay conditions
epochs Number of iterations for training
TS Time steps
Q Batch size

and returns

net Trained network
TR Training record of various values over each epoch:
  TR.epoch  Epoch number
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  TR.perf  Training performance
  TR.vperf  Validation performance
  TR.tperf  Test performance
Y Network output for last epoch
E Layer errors for last epoch
Pf Final input delay conditions
Af Collective layer outputs for last epoch
flag_stop Indicates if the user stopped the training

Training occurs according to trainbfgc’s training parameters, shown here with their
default values:

net.trainParam.epochs 100 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-6 Minimum performance gradient
net.trainParam.max_fail 5 Maximum validation failures
net.trainParam.searchFcn 'srchbacx'Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear
search.

net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in
perf

net.trainParam.beta 0.1 Scale factor that determines sufficiently large step
size

net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
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net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
net.trainParam.bmax 26 Maximum step size

info = trainbfgc(code) returns useful information for each code string:

'pnames' Names of training parameters
'pdefaults' Default training parameters

Algorithms

trainbfgc can train any network as long as its weight, net input, and transfer
functions have derivative functions. Backpropagation is used to calculate derivatives
of performance perf with respect to the weight and bias variables X. Each variable is
adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the
performance along the search direction. The line search function searchFcn is used to
locate the minimum point. The first search direction is the negative of the gradient of
performance. In succeeding iterations the search direction is computed according to the
following formula:

dX = -H\gX;

where gX is the gradient and H is an approximate Hessian matrix. See page 119 of Gill,
Murray, and Wright (Practical Optimization, 1981) for a more detailed discussion of the
BFGS quasi-Newton method.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
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• Precision problems have occurred in the matrix inversion.

References

Gill, Murray, and Wright, Practical Optimization, 1981

Introduced in R2006a
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trainbr

Bayesian regularization backpropagation

Syntax

net.trainFcn = 'trainbr'

[net,tr] = train(net,...)

Description

trainbr is a network training function that updates the weight and bias values
according to Levenberg-Marquardt optimization. It minimizes a combination of squared
errors and weights, and then determines the correct combination so as to produce a
network that generalizes well. The process is called Bayesian regularization.

net.trainFcn = 'trainbr' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainbr.

Training occurs according to trainbr training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.mu 0.005 Marquardt adjustment parameter
net.trainParam.mu_dec 0.1 Decrease factor for mu
net.trainParam.mu_inc 10 Increase factor for mu
net.trainParam.mu_max 1e10 Maximum value for mu
net.trainParam.max_fail 0 Maximum validation failures
net.trainParam.min_grad 1e-7 Minimum performance gradient
net.trainParam.show 25 Epochs between displays (NaN for no displays)
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net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Validation stops are disabled by default (max_fail = 0) so that training can continue
until an optimal combination of errors and weights is found. However, some weight/bias
minimization can still be achieved with shorter training times if validation is enabled by
setting max_fail to 6 or some other strictly positive value.

Network Use

You can create a standard network that uses trainbr with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainbr,

1 Set NET.trainFcn to 'trainbr'. This sets NET.trainParam to trainbr’s default
parameters.

2 Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
trainbr. See feedforwardnet and cascadeforwardnet for examples.

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network. It
involves fitting a noisy sine wave.

p = [-1:.05:1];

t = sin(2*pi*p)+0.1*randn(size(p));

A feed-forward network is created with a hidden layer of 2 neurons.

net = feedforwardnet(2,'trainbr');

Here the network is trained and tested.

net = train(net,p,t);

a = net(p)
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Limitations

This function uses the Jacobian for calculations, which assumes that performance is a
mean or sum of squared errors. Therefore networks trained with this function must use
either the mse or sse performance function.

Algorithms

trainbr can train any network as long as its weight, net input, and transfer functions
have derivative functions.

Bayesian regularization minimizes a linear combination of squared errors and weights. It
also modifies the linear combination so that at the end of training the resulting network
has good generalization qualities. See MacKay (Neural Computation, Vol. 4, No. 3,
1992, pp. 415 to 447) and Foresee and Hagan (Proceedings of the International Joint
Conference on Neural Networks, June, 1997) for more detailed discussions of Bayesian
regularization.

This Bayesian regularization takes place within the Levenberg-Marquardt algorithm.
Backpropagation is used to calculate the Jacobian jX of performance perf with respect
to the weight and bias variables X. Each variable is adjusted according to Levenberg-
Marquardt,

jj = jX * jX

je = jX * E

dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change shown above results in a
reduced performance value. The change is then made to the network, and mu is decreased
by mu_dec.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
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• mu exceeds mu_max.

References

MacKay, Neural Computation, Vol. 4, No. 3, 1992, pp. 415–447

Foresee and Hagan, Proceedings of the International Joint Conference on Neural
Networks, June, 1997

See Also
cascadeforwardnet | traingdm | traingda | traingdx | trainlm | trainrp |
traincgf | traincgb | trainscg | traincgp | trainbfg | feedforwardnet

Introduced before R2006a

1-488



 trainbu

trainbu
Batch unsupervised weight/bias training

Syntax
net.trainFcn = 'trainbu'

[net,tr] = train(net,...)

Description
trainbu trains a network with weight and bias learning rules with batch updates.
Weights and biases updates occur at the end of an entire pass through the input data.

trainbu is not called directly. Instead the train function calls it for networks whose
NET.trainFcn property is set to 'trainbu', thus:

net.trainFcn = 'trainbu' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainbu.

Training occurs according to trainbu training parameters, shown here with the
following default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showGUI true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Validation and test vectors have no impact on training for this function, but act as
independent measures of network generalization.

Network Use
You can create a standard network that uses trainbu by calling selforgmap. To
prepare a custom network to be trained with trainbu:
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1 Set NET.trainFcn to 'trainbu'. (This option sets NET.trainParam to trainbu
default parameters.)

2 Set each NET.inputWeights{i,j}.learnFcn to a learning function.
3 Set each NET.layerWeights{i,j}.learnFcn to a learning function.
4 Set each NET.biases{i}.learnFcn to a learning function. (Weight and bias

learning parameters are automatically set to default values for the given learning
function.)

To train the network:

1 Set NET.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.

See selforgmap for training examples.

Algorithms

Each weight and bias updates according to its learning function after each epoch (one
pass through the entire set of input vectors).

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• Performance is minimized to the goal.
• The maximum amount of time is exceeded.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

See Also
train | trainb

Introduced in R2010b
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trainc
Cyclical order weight/bias training

Syntax
net.trainFcn = 'trainc'

[net,tr] = train(net,...)

Description
trainc is not called directly. Instead it is called by train for networks whose
net.trainFcn property is set to 'trainc', thus:

net.trainFcn = 'trainc' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainc.

trainc trains a network with weight and bias learning rules with incremental updates
after each presentation of an input. Inputs are presented in cyclic order.

Training occurs according to trainc training parameters, shown here with their default
values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses trainc by calling competlayer. To
prepare a custom network to be trained with trainc,
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1 Set net.trainFcn to 'trainc'. This sets net.trainParam to trainc’s default
parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set
each net.layerWeights{i,j}.learnFcn to a learning function. Set each
net.biases{i}.learnFcn to a learning function. (Weight and bias learning
parameters are automatically set to default values for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.

See perceptron for training examples.

Algorithms

For each epoch, each vector (or sequence) is presented in order to the network, with the
weight and bias values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• Performance is minimized to the goal.
• The maximum amount of time is exceeded.

See Also
competlayer | train

Introduced before R2006a
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traincgb
Conjugate gradient backpropagation with Powell-Beale restarts

Syntax

net.trainFcn = 'traincgb'

[net,tr] = train(net,...)

Description

traincgb is a network training function that updates weight and bias values according
to the conjugate gradient backpropagation with Powell-Beale restarts.

net.trainFcn = 'traincgb' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traincgb.

Training occurs according to traincgb training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-10 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.searchFcn 'srchcha'Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear
search.
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net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in
perf

net.trainParam.beta 0.1 Scale factor that determines sufficiently large step
size

net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
net.trainParam.bmax 26 Maximum step size

Network Use

You can create a standard network that uses traincgb with feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be trained with traincgb,

1 Set net.trainFcn to 'traincgb'. This sets net.trainParam to traincgb’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
traincgb.

Examples

Train Neural Network Using traincgb Train Function

This example shows how to train a neural network using the traincgb train function.

Here a neural network is trained to predict body fat percentages.
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[x, t] = bodyfat_dataset;

net = feedforwardnet(10, 'traincgb');

net = train(net, x, t);

y = net(x);

Definitions

Powell-Beale Algorithm

For all conjugate gradient algorithms, the search direction is periodically reset to the
negative of the gradient. The standard reset point occurs when the number of iterations
is equal to the number of network parameters (weights and biases), but there are other
reset methods that can improve the efficiency of training. One such reset method was
proposed by Powell [Powe77], based on an earlier version proposed by Beale [Beal72].
This technique restarts if there is very little orthogonality left between the current
gradient and the previous gradient. This is tested with the following inequality:

g g gk
T

k k-
≥

1

2
0 2.

If this condition is satisfied, the search direction is reset to the negative of the gradient.

The traincgb routine has somewhat better performance than traincgp for some
problems, although performance on any given problem is difficult to predict. The storage
requirements for the Powell-Beale algorithm (six vectors) are slightly larger than for
Polak-Ribiére (four vectors).

Algorithms

traincgb can train any network as long as its weight, net input, and transfer functions
have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the
weight and bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the
performance along the search direction. The line search function searchFcn is used to
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locate the minimum point. The first search direction is the negative of the gradient of
performance. In succeeding iterations the search direction is computed from the new
gradient and the previous search direction according to the formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different ways.
The Powell-Beale variation of conjugate gradient is distinguished by two features. First,
the algorithm uses a test to determine when to reset the search direction to the negative
of the gradient. Second, the search direction is computed from the negative gradient, the
previous search direction, and the last search direction before the previous reset. See
Powell, Mathematical Programming, Vol. 12, 1977, pp. 241 to 254, for a more detailed
discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

References

Powell, M.J.D., “Restart procedures for the conjugate gradient method,” Mathematical
Programming, Vol. 12, 1977, pp. 241–254

See Also
traingdm | traingda | traingdx | trainlm | traincgp | traincgf | trainscg |
trainoss | trainbfg

Introduced before R2006a
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traincgf
Conjugate gradient backpropagation with Fletcher-Reeves updates

Syntax

net.trainFcn = 'traincgf'

[net,tr] = train(net,...)

Description

traincgf is a network training function that updates weight and bias values according
to conjugate gradient backpropagation with Fletcher-Reeves updates.

net.trainFcn = 'traincgf' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traincgf.

Training occurs according to traincgf training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-10 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.searchFcn 'srchcha'Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear
search.
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net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in
perf

net.trainParam.beta 0.1 Scale factor that determines sufficiently large step
size

net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
net.trainParam.bmax 26 Maximum step size

Network Use

You can create a standard network that uses traincgf with feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be trained with traincgf,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
traincgf.

Examples

Train Neural Network Using traincgf Train Function

This example shows how to train a neural network using the traincgf train function.

Here a neural network is trained to predict body fat percentages.
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[x, t] = bodyfat_dataset;

net = feedforwardnet(10, 'traincgf');

net = train(net, x, t);

y = net(x);

Definitions

Conjugate Gradient Algorithms

All the conjugate gradient algorithms start out by searching in the steepest descent
direction (negative of the gradient) on the first iteration.

p g
0 0

= -

A line search is then performed to determine the optimal distance to move along the
current search direction:

x x pk k k k+
=

1
a

Then the next search direction is determined so that it is conjugate to previous search
directions. The general procedure for determining the new search direction is to combine
the new steepest descent direction with the previous search direction:

p g pk k k k= - + -b
1

The various versions of the conjugate gradient algorithm are distinguished by the
manner in which the constant βk is computed. For the Fletcher-Reeves update the
procedure is
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k
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g g
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1 1

This is the ratio of the norm squared of the current gradient to the norm squared of the
previous gradient.

See [FlRe64] or [HDB96] for a discussion of the Fletcher-Reeves conjugate gradient
algorithm.
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The conjugate gradient algorithms are usually much faster than variable learning rate
backpropagation, and are sometimes faster than trainrp, although the results vary
from one problem to another. The conjugate gradient algorithms require only a little
more storage than the simpler algorithms. Therefore, these algorithms are good for
networks with a large number of weights.

Try the Neural Network Design demonstration nnd12cg [HDB96] for an illustration of
the performance of a conjugate gradient algorithm.

Algorithms

traincgf can train any network as long as its weight, net input, and transfer functions
have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the
weight and bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the
performance along the search direction. The line search function searchFcn is used to
locate the minimum point. The first search direction is the negative of the gradient of
performance. In succeeding iterations the search direction is computed from the new
gradient and the previous search direction, according to the formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different ways.
For the Fletcher-Reeves variation of conjugate gradient it is computed according to

Z = normnew_sqr/norm_sqr;

where norm_sqr is the norm square of the previous gradient and normnew_sqr is the
norm square of the current gradient. See page 78 of Scales (Introduction to Non-Linear
Optimization) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
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• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

References

Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
traingdm | traingda | traingdx | trainlm | traincgb | trainscg | traincgp |
trainoss | trainbfg

Introduced before R2006a
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traincgp
Conjugate gradient backpropagation with Polak-Ribiére updates

Syntax

net.trainFcn = 'traincgp'

[net,tr] = train(net,...)

Description

traincgp is a network training function that updates weight and bias values according
to conjugate gradient backpropagation with Polak-Ribiére updates.

net.trainFcn = 'traincgp' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traincgp.

Training occurs according to traincgp training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-10 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.searchFcn 'srchcha'Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear
search.
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net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in
perf

net.trainParam.beta 0.1 Scale factor that determines sufficiently large step
size

net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
net.trainParam.bmax 26 Maximum step size

Network Use

You can create a standard network that uses traincgp with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traincgp,

1 Set net.trainFcn to 'traincgp'. This sets net.trainParam to traincgp’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
traincgp.

Examples

Train Neural Network Using traincgp Train Function

This example shows how to train a neural network using the traincgp train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;

net = feedforwardnet(10, 'traincgp');
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net = train(net, x, t);

y = net(x);

Definitions

Conjugate Gradient Backpropagation with Polak-Ribiére Updates

Another version of the conjugate gradient algorithm was proposed by Polak and Ribiére.
As with the Fletcher-Reeves algorithm, traincgf, the search direction at each iteration
is determined by

p g pk k k k= - + -b
1

For the Polak-Ribiére update, the constant βk is computed by
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This is the inner product of the previous change in the gradient with the current gradient
divided by the norm squared of the previous gradient. See [FlRe64] or [HDB96] for a
discussion of the Polak-Ribiére conjugate gradient algorithm.

The traincgp routine has performance similar to traincgf. It is difficult to predict
which algorithm will perform best on a given problem. The storage requirements for
Polak-Ribiére (four vectors) are slightly larger than for Fletcher-Reeves (three vectors).

Algorithms

traincgp can train any network as long as its weight, net input, and transfer functions
have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the
weight and bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;
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where dX is the search direction. The parameter a is selected to minimize the
performance along the search direction. The line search function searchFcn is used to
locate the minimum point. The first search direction is the negative of the gradient of
performance. In succeeding iterations the search direction is computed from the new
gradient and the previous search direction according to the formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different ways.
For the Polak-Ribiére variation of conjugate gradient, it is computed according to

Z = ((gX - gX_old)'*gX)/norm_sqr;

where norm_sqr is the norm square of the previous gradient, and gX_old is the
gradient on the previous iteration. See page 78 of Scales (Introduction to Non-Linear
Optimization, 1985) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

References

Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
traingdm | traingda | traingdx | trainlm | trainrp | traincgf | traincgb |
trainscg | trainoss | trainbfg

Introduced before R2006a
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traingd
Gradient descent backpropagation

Syntax
net.trainFcn = 'traingd'

[net,tr] = train(net,...)

Description
traingd is a network training function that updates weight and bias values according to
gradient descent.

net.trainFcn = 'traingd' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traingd.

Training occurs according to traingd training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.lr 0.01 Learning rate
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.min_grad 1e-5 Minimum performance gradient
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses traingd with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traingd,
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1 Set net.trainFcn to 'traingd'. This sets net.trainParam to traingd’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
traingd.

See help feedforwardnet and help cascadeforwardnet for examples.

Definitions

Gradient Descent Backpropagation

The batch steepest descent training function is traingd. The weights and biases are
updated in the direction of the negative gradient of the performance function. If you want
to train a network using batch steepest descent, you should set the network trainFcn
to traingd, and then call the function train. There is only one training function
associated with a given network.

There are seven training parameters associated with traingd:

• epochs

• show

• goal

• time

• min_grad

• max_fail

• lr

The learning rate lr is multiplied times the negative of the gradient to determine the
changes to the weights and biases. The larger the learning rate, the bigger the step. If
the learning rate is made too large, the algorithm becomes unstable. If the learning rate
is set too small, the algorithm takes a long time to converge. See page 12-8 of [HDB96]
for a discussion of the choice of learning rate.

The training status is displayed for every show iterations of the algorithm. (If show is
set to NaN, then the training status is never displayed.) The other parameters determine
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when the training stops. The training stops if the number of iterations exceeds epochs,
if the performance function drops below goal, if the magnitude of the gradient is less
than mingrad, or if the training time is longer than time seconds. max_fail, which is
associated with the early stopping technique, is discussed in Improving Generalization.

The following code creates a training set of inputs p and targets t. For batch training, all
the input vectors are placed in one matrix.

p = [-1 -1 2 2; 0 5 0 5];

t = [-1 -1 1 1];

Create the feedforward network.

net = feedforwardnet(3,'traingd');

In this simple example, turn off a feature that is introduced later.

net.divideFcn = '';

At this point, you might want to modify some of the default training parameters.

net.trainParam.show = 50;

net.trainParam.lr = 0.05;

net.trainParam.epochs = 300;

net.trainParam.goal = 1e-5;

If you want to use the default training parameters, the preceding commands are not
necessary.

Now you are ready to train the network.

[net,tr] = train(net,p,t);

The training record tr contains information about the progress of training.

Now you can simulate the trained network to obtain its response to the inputs in the
training set.

a = net(p)

a =

   -1.0026   -0.9962   1.0010   0.9960

Try the Neural Network Design demonstration nnd12sd1 [HDB96] for an illustration of
the performance of the batch gradient descent algorithm.
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Algorithms

traingd can train any network as long as its weight, net input, and transfer functions
have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the
weight and bias variables X. Each variable is adjusted according to gradient descent:

dX = lr * dperf/dX

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

See Also
traingdm | traingda | traingdx | trainlm

Introduced before R2006a
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traingda
Gradient descent with adaptive learning rate backpropagation

Syntax

net.trainFcn = 'traingda'

[net,tr] = train(net,...)

Description

traingda is a network training function that updates weight and bias values according
to gradient descent with adaptive learning rate.

net.trainFcn = 'traingda' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traingda.

Training occurs according to traingda training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.lr 0.01 Learning rate
net.trainParam.lr_inc 1.05 Ratio to increase learning rate
net.trainParam.lr_dec 0.7 Ratio to decrease learning rate
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.max_perf_inc 1.04 Maximum performance increase
net.trainParam.min_grad 1e-5 Minimum performance gradient
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds
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Network Use

You can create a standard network that uses traingda with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traingda,

1 Set net.trainFcn to 'traingda'. This sets net.trainParam to traingda’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
traingda.

See help feedforwardnet and help cascadeforwardnet for examples.

Definitions

Gradient Descent with Adaptive Learning Rate Backpropagation

With standard steepest descent, the learning rate is held constant throughout training.
The performance of the algorithm is very sensitive to the proper setting of the learning
rate. If the learning rate is set too high, the algorithm can oscillate and become unstable.
If the learning rate is too small, the algorithm takes too long to converge. It is not
practical to determine the optimal setting for the learning rate before training, and, in
fact, the optimal learning rate changes during the training process, as the algorithm
moves across the performance surface.

You can improve the performance of the steepest descent algorithm if you allow the
learning rate to change during the training process. An adaptive learning rate attempts
to keep the learning step size as large as possible while keeping learning stable. The
learning rate is made responsive to the complexity of the local error surface.

An adaptive learning rate requires some changes in the training procedure used by
traingd. First, the initial network output and error are calculated. At each epoch new
weights and biases are calculated using the current learning rate. New outputs and
errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a predefined
ratio, max_perf_inc (typically 1.04), the new weights and biases are discarded. In
addition, the learning rate is decreased (typically by multiplying by lr_dec = 0.7).
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Otherwise, the new weights, etc., are kept. If the new error is less than the old error, the
learning rate is increased (typically by multiplying by lr_inc = 1.05).

This procedure increases the learning rate, but only to the extent that the network can
learn without large error increases. Thus, a near-optimal learning rate is obtained for
the local terrain. When a larger learning rate could result in stable learning, the learning
rate is increased. When the learning rate is too high to guarantee a decrease in error, it is
decreased until stable learning resumes.

Try the Neural Network Design demonstration nnd12vl [HDB96] for an illustration of
the performance of the variable learning rate algorithm.

Backpropagation training with an adaptive learning rate is implemented with the
function traingda, which is called just like traingd, except for the additional training
parameters max_perf_inc, lr_dec, and lr_inc. Here is how it is called to train the
previous two-layer network:

p = [-1 -1 2 2; 0 5 0 5];

t = [-1 -1 1 1];

net = feedforwardnet(3,'traingda');

net.trainParam.lr = 0.05;

net.trainParam.lr_inc = 1.05;

net = train(net,p,t);

y = net(p)

Algorithms

traingda can train any network as long as its weight, net input, and transfer functions
have derivative functions.

Backpropagation is used to calculate derivatives of performance dperf with respect to
the weight and bias variables X. Each variable is adjusted according to gradient descent:

dX = lr*dperf/dX

At each epoch, if performance decreases toward the goal, then the learning rate is
increased by the factor lr_inc. If performance increases by more than the factor
max_perf_inc, the learning rate is adjusted by the factor lr_dec and the change that
increased the performance is not made.

Training stops when any of these conditions occurs:
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• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

See Also
traingd | traingdm | traingdx | trainlm

Introduced before R2006a
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traingdm

Gradient descent with momentum backpropagation

Syntax

net.trainFcn = 'traingdm'

[net,tr] = train(net,...)

Description

traingdm is a network training function that updates weight and bias values according
to gradient descent with momentum.

net.trainFcn = 'traingdm' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traingdm.

Training occurs according to traingdm training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.lr 0.01 Learning rate
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.mc 0.9 Momentum constant
net.trainParam.min_grad 1e-5 Minimum performance gradient
net.trainParam.show 25 Epochs between showing progress
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

1-514



 traingdm

Network Use

You can create a standard network that uses traingdm with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traingdm,

1 Set net.trainFcn to 'traingdm'. This sets net.trainParam to traingdm’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
traingdm.

See help feedforwardnet and help cascadeforwardnet for examples.

Definitions

Gradient Descent with Momentum

In addition to traingd, there are three other variations of gradient descent.

Gradient descent with momentum, implemented by traingdm, allows a network to
respond not only to the local gradient, but also to recent trends in the error surface.
Acting like a lowpass filter, momentum allows the network to ignore small features
in the error surface. Without momentum a network can get stuck in a shallow local
minimum. With momentum a network can slide through such a minimum. See page 12–9
of [HDB96] for a discussion of momentum.

Gradient descent with momentum depends on two training parameters. The parameter
lr indicates the learning rate, similar to the simple gradient descent. The parameter mc
is the momentum constant that defines the amount of momentum. mc is set between 0
(no momentum) and values close to 1 (lots of momentum). A momentum constant of 1
results in a network that is completely insensitive to the local gradient and, therefore,
does not learn properly.)

p = [-1 -1 2 2; 0 5 0 5];

t = [-1 -1 1 1];

net = feedforwardnet(3,'traingdm');

net.trainParam.lr = 0.05;

net.trainParam.mc = 0.9;
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net = train(net,p,t);

y = net(p)

Try the Neural Network Design demonstration nnd12mo [HDB96] for an illustration of
the performance of the batch momentum algorithm.

Algorithms

traingdm can train any network as long as its weight, net input, and transfer functions
have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the
weight and bias variables X. Each variable is adjusted according to gradient descent with
momentum,

dX = mc*dXprev + lr*(1-mc)*dperf/dX

where dXprev is the previous change to the weight or bias.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

See Also
traingd | traingda | traingdx | trainlm

Introduced before R2006a
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traingdx
Gradient descent with momentum and adaptive learning rate backpropagation

Syntax

net.trainFcn = 'traingdx'

[net,tr] = train(net,...)

Description

traingdx is a network training function that updates weight and bias values according
to gradient descent momentum and an adaptive learning rate.

net.trainFcn = 'traingdx' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traingdx.

Training occurs according to traingdx training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.lr 0.01 Learning rate
net.trainParam.lr_inc 1.05 Ratio to increase learning rate
net.trainParam.lr_dec 0.7 Ratio to decrease learning rate
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.max_perf_inc 1.04 Maximum performance increase
net.trainParam.mc 0.9 Momentum constant
net.trainParam.min_grad 1e-5 Minimum performance gradient
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
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net.trainParam.time inf Maximum time to train in seconds

Network Use

You can create a standard network that uses traingdx with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traingdx,

1 Set net.trainFcn to 'traingdx'. This sets net.trainParam to traingdx’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
traingdx.

See help feedforwardnet and help cascadeforwardnet for examples.

Algorithms

The function traingdx combines adaptive learning rate with momentum training. It is
invoked in the same way as traingda, except that it has the momentum coefficient mc
as an additional training parameter.

traingdx can train any network as long as its weight, net input, and transfer functions
have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the
weight and bias variables X. Each variable is adjusted according to gradient descent with
momentum,

dX = mc*dXprev + lr*mc*dperf/dX

where dXprev is the previous change to the weight or bias.

For each epoch, if performance decreases toward the goal, then the learning rate is
increased by the factor lr_inc. If performance increases by more than the factor
max_perf_inc, the learning rate is adjusted by the factor lr_dec and the change that
increased the performance is not made.

Training stops when any of these conditions occurs:
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• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

See Also
traingd | traingda | traingdm | trainlm

Introduced before R2006a
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trainlm
Levenberg-Marquardt backpropagation

Syntax

net.trainFcn = 'trainlm'

[net,tr] = train(net,...)

Description

trainlm is a network training function that updates weight and bias values according to
Levenberg-Marquardt optimization.

trainlm is often the fastest backpropagation algorithm in the toolbox, and is highly
recommended as a first-choice supervised algorithm, although it does require more
memory than other algorithms.

net.trainFcn = 'trainlm' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainlm.

Training occurs according to trainlm training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.min_grad 1e-7 Minimum performance gradient
net.trainParam.mu 0.001 Initial mu
net.trainParam.mu_dec 0.1 mu decrease factor
net.trainParam.mu_inc 10 mu increase factor
net.trainParam.mu_max 1e10 Maximum mu
net.trainParam.show 25 Epochs between displays (NaN for no displays)
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net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Validation vectors are used to stop training early if the network performance on the
validation vectors fails to improve or remains the same for max_fail epochs in a row.
Test vectors are used as a further check that the network is generalizing well, but do not
have any effect on training.

trainlm is the default training function for several network creation functions including
newcf, newdtdnn, newff, and newnarx.

Network Use

You can create a standard network that uses trainlm with feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be trained with trainlm,

1 Set net.trainFcn to 'trainlm'. This sets net.trainParam to trainlm’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
trainlm.

See help feedforwardnet and help cascadeforwardnet for examples.

Examples

Train Neural Network Using trainlm Train Function

This example shows how to train a neural network using the trainlm train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;

net = feedforwardnet(10, 'trainlm');
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net = train(net, x, t);

y = net(x);

Limitations

This function uses the Jacobian for calculations, which assumes that performance is a
mean or sum of squared errors. Therefore, networks trained with this function must use
either the mse or sse performance function.

Definitions

Levenberg-Marquardt Algorithm

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to
approach second-order training speed without having to compute the Hessian matrix.
When the performance function has the form of a sum of squares (as is typical in training
feedforward networks), then the Hessian matrix can be approximated as
H = JTJ

and the gradient can be computed as
g = JTe

where J is the Jacobian matrix that contains first derivatives of the network errors
with respect to the weights and biases, and e is a vector of network errors. The Jacobian
matrix can be computed through a standard backpropagation technique (see [HaMe94])
that is much less complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in
the following Newton-like update:

x x J J I J ek k
T T

+
-

= - +1
1

[ ]m

When the scalar µ is zero, this is just Newton’s method, using the approximate Hessian
matrix. When µ is large, this becomes gradient descent with a small step size. Newton’s
method is faster and more accurate near an error minimum, so the aim is to shift toward
Newton’s method as quickly as possible. Thus, µ is decreased after each successful step
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(reduction in performance function) and is increased only when a tentative step would
increase the performance function. In this way, the performance function is always
reduced at each iteration of the algorithm.

The original description of the Levenberg-Marquardt algorithm is given in [Marq63].
The application of Levenberg-Marquardt to neural network training is described in
[HaMe94] and starting on page 12-19 of [HDB96]. This algorithm appears to be the
fastest method for training moderate-sized feedforward neural networks (up to several
hundred weights). It also has an efficient implementation in MATLAB® software, because
the solution of the matrix equation is a built-in function, so its attributes become even
more pronounced in a MATLAB environment.

Try the Neural Network Design demonstration nnd12m [HDB96] for an illustration of the
performance of the batch Levenberg-Marquardt algorithm.

Algorithms

trainlm supports training with validation and test vectors if the network’s
NET.divideFcn property is set to a data division function. Validation vectors are
used to stop training early if the network performance on the validation vectors fails
to improve or remains the same for max_fail epochs in a row. Test vectors are used
as a further check that the network is generalizing well, but do not have any effect on
training.

trainlm can train any network as long as its weight, net input, and transfer functions
have derivative functions.

Backpropagation is used to calculate the Jacobian jX of performance perf with respect
to the weight and bias variables X. Each variable is adjusted according to Levenberg-
Marquardt,

jj = jX * jX

je = jX * E

dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change above results in a
reduced performance value. The change is then made to the network and mu is decreased
by mu_dec.
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Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• mu exceeds mu_max.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

Introduced before R2006a
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trainoss
One-step secant backpropagation

Syntax

net.trainFcn = 'trainoss'

[net,tr] = train(net,...)

Description

trainoss is a network training function that updates weight and bias values according
to the one-step secant method.

net.trainFcn = 'trainoss' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainoss.

Training occurs according to trainoss training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.min_grad 1e-10 Minimum performance gradient
net.trainParam.searchFcn 'srchbac'Name of line search routine to use
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear
search.
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net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in
perf

net.trainParam.beta 0.1 Scale factor that determines sufficiently large step
size

net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
net.trainParam.bmax 26 Maximum step size

Network Use

You can create a standard network that uses trainoss with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainoss:

1 Set net.trainFcn to 'trainoss'. This sets net.trainParam to trainoss’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
trainoss.

Examples

Train Neural Network Using trainoss Train Function

This example shows how to train a neural network using the trainoss train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;

net = feedforwardnet(10, 'trainoss');
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net = train(net, x, t);

y = net(x);

Definitions

One Step Secant Method

Because the BFGS algorithm requires more storage and computation in each iteration
than the conjugate gradient algorithms, there is need for a secant approximation with
smaller storage and computation requirements. The one step secant (OSS) method is
an attempt to bridge the gap between the conjugate gradient algorithms and the quasi-
Newton (secant) algorithms. This algorithm does not store the complete Hessian matrix;
it assumes that at each iteration, the previous Hessian was the identity matrix. This
has the additional advantage that the new search direction can be calculated without
computing a matrix inverse.

The one step secant method is described in [Batt92]. This algorithm requires less storage
and computation per epoch than the BFGS algorithm. It requires slightly more storage
and computation per epoch than the conjugate gradient algorithms. It can be considered
a compromise between full quasi-Newton algorithms and conjugate gradient algorithms.

Algorithms

trainoss can train any network as long as its weight, net input, and transfer functions
have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the
weight and bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the
performance along the search direction. The line search function searchFcn is used to
locate the minimum point. The first search direction is the negative of the gradient of
performance. In succeeding iterations the search direction is computed from the new
gradient and the previous steps and gradients, according to the following formula:

dX = -gX + Ac*X_step + Bc*dgX;
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where gX is the gradient, X_step is the change in the weights on the previous iteration,
and dgX is the change in the gradient from the last iteration. See Battiti (Neural
Computation, Vol. 4, 1992, pp. 141–166) for a more detailed discussion of the one-step
secant algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

References

Battiti, R., “First and second order methods for learning: Between steepest descent and
Newton’s method,” Neural Computation, Vol. 4, No. 2, 1992, pp. 141–166

See Also
traingdm | traingda | traingdx | trainlm | trainrp | traincgf | traincgb |
trainscg | traincgp | trainbfg

Introduced before R2006a
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trainr
Random order incremental training with learning functions

Syntax
net.trainFcn = 'trainr'

[net,tr] = train(net,...)

Description
trainr is not called directly. Instead it is called by train for networks whose
net.trainFcn property is set to 'trainr', thus:

net.trainFcn = 'trainr' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainr.

trainr trains a network with weight and bias learning rules with incremental updates
after each presentation of an input. Inputs are presented in random order.

Training occurs according to trainr training parameters, shown here with their default
values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses trainr by calling competlayer or
selforgmap. To prepare a custom network to be trained with trainr,
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1 Set net.trainFcn to 'trainr'. This sets net.trainParam to trainr’s default
parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.
3 Set each net.layerWeights{i,j}.learnFcn to a learning function.
4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias

learning parameters are automatically set to default values for the given learning
function.)

To train the network,

1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.

See help competlayer and help selforgmap for training examples.

Algorithms

For each epoch, all training vectors (or sequences) are each presented once in a different
random order, with the network and weight and bias values updated accordingly after
each individual presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• Performance is minimized to the goal.
• The maximum amount of time is exceeded.

See Also
train

Introduced before R2006a
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trainrp
Resilient backpropagation

Syntax

net.trainFcn = 'trainrp'

[net,tr] = train(net,...)

Description

trainrp is a network training function that updates weight and bias values according to
the resilient backpropagation algorithm (Rprop).

net.trainFcn = 'trainrp' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainrp.

Training occurs according to trainrp training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-5 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.lr 0.01 Learning rate
net.trainParam.delt_inc 1.2 Increment to weight change
net.trainParam.delt_dec 0.5 Decrement to weight change
net.trainParam.delta0 0.07 Initial weight change
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net.trainParam.deltamax 50.0 Maximum weight change

Network Use

You can create a standard network that uses trainrp with feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be trained with trainrp,

1 Set net.trainFcn to 'trainrp'. This sets net.trainParam to trainrp’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
trainrp.

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

p = [0 1 2 3 4 5];

t = [0 0 0 1 1 1];

A two-layer feed-forward network with two hidden neurons and this training function is
created.

Create and test a network.

net = feedforwardnet(2,'trainrp');

Here the network is trained and retested.

net.trainParam.epochs = 50;

net.trainParam.show = 10;

net.trainParam.goal = 0.1;

net = train(net,p,t);

a = net(p)

See help feedforwardnet and help cascadeforwardnet for other examples.
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Definitions

Resilient Backpropagation

Multilayer networks typically use sigmoid transfer functions in the hidden layers. These
functions are often called “squashing” functions, because they compress an infinite input
range into a finite output range. Sigmoid functions are characterized by the fact that
their slopes must approach zero as the input gets large. This causes a problem when
you use steepest descent to train a multilayer network with sigmoid functions, because
the gradient can have a very small magnitude and, therefore, cause small changes in
the weights and biases, even though the weights and biases are far from their optimal
values.

The purpose of the resilient backpropagation (Rprop) training algorithm is to eliminate
these harmful effects of the magnitudes of the partial derivatives. Only the sign of
the derivative can determine the direction of the weight update; the magnitude of
the derivative has no effect on the weight update. The size of the weight change is
determined by a separate update value. The update value for each weight and bias is
increased by a factor delt_inc whenever the derivative of the performance function
with respect to that weight has the same sign for two successive iterations. The update
value is decreased by a factor delt_dec whenever the derivative with respect to that
weight changes sign from the previous iteration. If the derivative is zero, the update
value remains the same. Whenever the weights are oscillating, the weight change is
reduced. If the weight continues to change in the same direction for several iterations,
the magnitude of the weight change increases. A complete description of the Rprop
algorithm is given in [RiBr93].

The following code recreates the previous network and trains it using the Rprop
algorithm. The training parameters for trainrp are epochs, show, goal, time,
min_grad, max_fail, delt_inc, delt_dec, delta0, and deltamax. The first eight
parameters have been previously discussed. The last two are the initial step size and the
maximum step size, respectively. The performance of Rprop is not very sensitive to the
settings of the training parameters. For the example below, the training parameters are
left at the default values:

p = [-1 -1 2 2;0 5 0 5];

t = [-1 -1 1 1];

net = feedforwardnet(3,'trainrp');

net = train(net,p,t);

y = net(p)
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rprop is generally much faster than the standard steepest descent algorithm. It also
has the nice property that it requires only a modest increase in memory requirements.
You do need to store the update values for each weight and bias, which is equivalent to
storage of the gradient.

Algorithms

trainrp can train any network as long as its weight, net input, and transfer functions
have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the
weight and bias variables X. Each variable is adjusted according to the following:

dX = deltaX.*sign(gX);

where the elements of deltaX are all initialized to delta0, and gX is the gradient. At
each iteration the elements of deltaX are modified. If an element of gX changes sign
from one iteration to the next, then the corresponding element of deltaX is decreased by
delta_dec. If an element of gX maintains the same sign from one iteration to the next,
then the corresponding element of deltaX is increased by delta_inc. See Riedmiller,
M., and H. Braun, “A direct adaptive method for faster backpropagation learning:
The RPROP algorithm,” Proceedings of the IEEE International Conference on Neural
Networks,1993, pp. 586–591.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

References

Riedmiller, M., and H. Braun, “A direct adaptive method for faster backpropagation
learning: The RPROP algorithm,” Proceedings of the IEEE International Conference on
Neural Networks,1993, pp. 586–591.
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See Also
traingdm | traingda | traingdx | trainlm | traincgp | traincgf | traincgb |
trainscg | trainoss | trainbfg

Introduced before R2006a
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trainru

Unsupervised random order weight/bias training

Syntax

net.trainFcn = 'trainru'

[net,tr] = train(net,...)

Description

trainru is not called directly. Instead it is called by train for networks whose
net.trainFcn property is set to 'trainru', thus:

net.trainFcn = 'trainru' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainru.

trainru trains a network with weight and bias learning rules with incremental updates
after each presentation of an input. Inputs are presented in random order.

Training occurs according to trainru training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time Inf Maximum time to train in seconds

Network Use

To prepare a custom network to be trained with trainru,
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1 Set net.trainFcn to 'trainru'. This sets net.trainParam to trainru’s default
parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.
3 Set each net.layerWeights{i,j}.learnFcn to a learning function.
4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias

learning parameters are automatically set to default values for the given learning
function.)

To train the network,

1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.

Algorithms

For each epoch, all training vectors (or sequences) are each presented once in a different
random order, with the network and weight and bias values updated accordingly after
each individual presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.

See Also
train | trainr

Introduced in R2010b
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trains

Sequential order incremental training with learning functions

Syntax

net.trainFcn = 'trains'

[net,tr] = train(net,...)

Description

trains is not called directly. Instead it is called by train for networks whose
net.trainFcn property is set to 'trains', thus:

net.trainFcn = 'trains' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trains.

trains trains a network with weight and bias learning rules with sequential updates.
The sequence of inputs is presented to the network with updates occurring after each
time step.

This incremental training algorithm is commonly used for adaptive applications.

Training occurs according to trains training parameters, shown here with their default
values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time Inf Maximum time to train in seconds
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Network Use

You can create a standard network that uses trains for adapting by calling
perceptron or linearlayer.

To prepare a custom network to adapt with trains,

1 Set net.adaptFcn to 'trains'. This sets net.adaptParam to trains’s default
parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set
each net.layerWeights{i,j}.learnFcn to a learning function. Set each
net.biases{i}.learnFcn to a learning function. (Weight and bias learning
parameters are automatically set to default values for the given learning function.)

To allow the network to adapt,

1 Set weight and bias learning parameters to desired values.
2 Call adapt.

See help perceptron and help linearlayer for adaption examples.

Algorithms

Each weight and bias is updated according to its learning function after each time step in
the input sequence.

See Also
train | trainb | trainc | trainr

Introduced before R2006a
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trainscg
Scaled conjugate gradient backpropagation

Syntax

net.trainFcn = 'trainscg'

[net,tr] = train(net,...)

Description

trainscg is a network training function that updates weight and bias values according
to the scaled conjugate gradient method.

net.trainFcn = 'trainscg' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainscg.

Training occurs according to trainscg training parameters, shown here with their
default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-6 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.sigma 5.0e-5 Determine change in weight for second

derivative approximation
net.trainParam.lambda 5.0e-7 Parameter for regulating the indefiniteness of

the Hessian
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Network Use

You can create a standard network that uses trainscg with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainscg,

1 Set net.trainFcn to 'trainscg'. This sets net.trainParam to trainscg’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with
trainscg.

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

p = [0 1 2 3 4 5];

t = [0 0 0 1 1 1];

A two-layer feed-forward network with two hidden neurons and this training function is
created.

net = feedforwardnet(2,'trainscg');

Here the network is trained and retested.

net = train(net,p,t);

a = net(p)

See help feedforwardnet and help cascadeforwardnet for other examples.

Algorithms

trainscg can train any network as long as its weight, net input, and transfer
functions have derivative functions. Backpropagation is used to calculate derivatives of
performance perf with respect to the weight and bias variables X.

The scaled conjugate gradient algorithm is based on conjugate directions, as in
traincgp, traincgf, and traincgb, but this algorithm does not perform a line search
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at each iteration. See Moller (Neural Networks, Vol. 6, 1993, pp. 525–533) for a more
detailed discussion of the scaled conjugate gradient algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time

it decreased (when using validation).

References

Moller, Neural Networks, Vol. 6, 1993, pp. 525–533

See Also
traingdm | traingda | traingdx | trainlm | trainrp | traincgf | traincgb |
trainbfg | traincgp | trainoss

Introduced before R2006a
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tribas
Triangular basis transfer function

Graph and Symbol

Syntax

A = tribas(N,FP)

Description

tribas is a neural transfer function. Transfer functions calculate a layer’s output from
its net input.

A = tribas(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the triangular basis function applied to each element
of N.

info = tribas('code') can take the following forms to return specific information:

tribas('name') returns the name of this function.
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tribas('output',FP) returns the [min max] output range.

tribas('active',FP) returns the [min max] active input range.

tribas('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-
by-Q.

tribas('fpnames') returns the names of the function parameters.

tribas('fpdefaults') returns the default function parameters.

Examples

Here you create a plot of the tribas transfer function.

n = -5:0.1:5;

a = tribas(n);

plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'tribas';

Algorithms
a = tribas(n) = 1 - abs(n), if -1 <= n <= 1

              = 0, otherwise

See Also
sim | radbas

Introduced before R2006a
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tritop

Triangle layer topology function

Syntax

pos = tritop(dimensions)

Description

tritop calculates neuron positions for layers whose neurons are arranged in an N-
dimensional triangular grid.

pos = tritop(dimensions) takes one argument:

dimensions Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors, where N is the number of
dimensions and S is the product of dimensions.

Examples

Display Layer with Triangular Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in
an 8-by-5 triangular grid.

pos = tritop([8 5]);

plotsom(pos)
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See Also
gridtop | hextop | randtop

Introduced in R2010b
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unconfigure
Unconfigure network inputs and outputs

Syntax
unconfigure(net)

unconfigure(net, 'inputs', i)

unconfigure(net, 'outputs', i)

Description
unconfigure(net) returns a network with its input and output sizes set to 0, its input
and output processing settings and related weight initialization settings set to values
consistent with zero-sized signals. The new network will be ready to be reconfigured for
data of the same or different dimensions than it was previously configured for.

unconfigure(net, 'inputs', i) unconfigures the inputs indicated by the indices i.
If no indices are specified, all inputs are unconfigured.

unconfigure(net, 'outputs', i) unconfigures the outputs indicated by the indices
i. If no indices are specified, all outputs are unconfigured.

Examples
Here a network is configured for a simple fitting problem, and then unconfigured.

[x,t] = simplefit_dataset;

net = fitnet(10);

view(net)

net = configure(net,x,t);

view(net)

net = unconfigure(net)

view(net)

See Also
configure | isconfigured
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Introduced in R2010b
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vec2ind
Convert vectors to indices

Syntax

[ind,n] = vec2ind

Description

ind2vec and vec2ind(vec) allow indices to be represented either by themselves or as
vectors containing a 1 in the row of the index they represent.

[ind,n] = vec2ind takes one argument,

vec Matrix of vectors, each containing a single 1

and returns

ind The indices of the 1s
n The number of rows in vec

Examples

Here three vectors are converted to indices and back, while preserving the number of
rows.

vec = [0 0 1 0; 1 0 0 0; 0 1 0 0]'

vec =

     0     1     0

     0     0     1

     1     0     0

     0     0     0

[ind,n] = vec2ind(vec)
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ind =

     3     1     2

n =

     4

vec2 = full(ind2vec(ind,n)) 

vec2 =

     0     1     0

     0     0     1

     1     0     0

     0     0     0

See Also
ind2vec | sub2ind | ind2sub

Introduced before R2006a
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view
View neural network

Syntax

view(net)

Description

view(net) opens a window that shows your neural network (specified in net) as a
graphical diagram.

Example

View Neural Network

This example shows how to view the diagram of a pattern recognition network.

[x,t] = iris_dataset;

net = patternnet;

net = configure(net,x,t);

view(net)

Introduced in R2008a
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Neural Net Fitting
Fit data by training a two-layer feed-forward network

Description
The Neural Net Fitting app leads you through solving a data-fitting problem using
a two-layer feed-forward network. It helps you select data, divide it into training,
validation, and testing sets, define the network architecture, and train the network.
You can select your own data from the MATLAB workspace or use one of the example
datasets. After training the network, evaluate its performance using mean squared error
and regression analysis. Further analyze the results using visualization tools such as
a regression fit or histogram of the errors. You can then evaluate the performance of
the network on a test set. If you are not satisfied with the results, you can retrain the
network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training
process. You can also save the trained network to test on new data or use for solving
similar fitting problems. The app also provides the option to generate various deployable
versions of your trained network. For example, you can deploy the trained network using
MATLAB Compiler, MATLAB Coder, or Simulink Coder tools.

Required Products

• MATLAB
• Neural Network Toolbox

Open the Neural Net Fitting App

• MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization,
click the app icon.

• MATLAB command prompt: Enter nftool.

Examples
• “Fit Data with a Neural Network”
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See Also

See Also

Apps
Neural Net Time Series | Neural Net Clustering | Neural Net Pattern Recognition

Functions
feedforwardnet | fitnet | trainbr | trainlm | trainscg

Topics
“Fit Data with a Neural Network”
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Neural Net Clustering

Cluster data by training a self-organizing maps network

Description
The Neural Net Clustering app leads you through solving a clustering problem using a
self-organizing map (SOM). It helps you select data, define the network architecture, and
train the network. You can select your own data from the MATLAB workspace or use one
of the example datasets. After training the network, analyze the results using various
visualization tools. You can then evaluate the performance of the network on a test set. If
you are not satisfied with the results, you can retrain the network with modified settings
or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training
process. You can also save the trained network to test on new data or use for solving
similar clustering problems. The app also provides the option to generate various
deployable versions of your trained network. For example, you can deploy the trained
network using MATLAB Compiler, MATLAB Coder, or Simulink Coder tools.

Required Products

• MATLAB
• Neural Network Toolbox

Open the Neural Net Clustering App

• MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization,
click the app icon.

• MATLAB command prompt: Enter nctool.

Examples
• “Cluster Data with a Self-Organizing Map”
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See Also

See Also

Apps
Neural Net Fitting | Neural Net Pattern Recognition | Neural Net Time Series

Functions
learnsomb | selforgmap | trainbu

Topics
“Cluster Data with a Self-Organizing Map”

1-555



1 Functions — Alphabetical List

Neural Net Pattern Recognition
Classify data by training a two-layer feed-forward network

Description
The Neural Net Pattern Recognition app leads you through solving a data
classification problem using a two-layer feed-forward network. It helps you select data,
divide it into training, validation, and testing sets, define the network architecture,
and train the network. You can select your own data from the MATLAB workspace or
use one of the example datasets. After training the network, evaluate its performance
using cross-entropy and percent misclassification error. Further analyze the results
using visualization tools such as confusion matrices and receiver operating characteristic
curves. You can then evaluate the performance of the network on a test set. If you are
not satisfied with the results, you can retrain the network with modified settings or on a
larger data set.

You can generate MATLAB scripts to reproduce results or customize the training
process. You can also save the trained network to test on new data or use for solving
similar classification problems. The app also provides the option to generate various
deployable versions of your trained network. For example, you can deploy the trained
network using MATLAB Compiler, MATLAB Coder, or Simulink Coder tools.

Required Products

• MATLAB
• Neural Network Toolbox

Open the Neural Net Pattern Recognition App
• MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization,

click the app icon.
• MATLAB command prompt: Enter nprtool.

Examples
• “Classify Patterns with a Neural Network”

1-556



 Neural Net Pattern Recognition

See Also

See Also

Apps
Neural Net Fitting | Neural Net Clustering | Neural Net Time Series

Functions
patternnet | trainlm

Topics
“Classify Patterns with a Neural Network”
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Neural Net Time Series
Solve a nonlinear time series problem by training a dynamic neural network

Description
The Neural Net Time Series app leads you through solving three different kinds of
nonlinear time series problems using a dynamic network. It helps you select data, divide
it into training, validation, and testing sets, define the network architecture, and train
the network. You can select your own data from the MATLAB workspace or use one of
the example datasets. After training the network, evaluate its performance using mean
squared error and regression analysis. Further analyze the results using visualization
tools such as an error autocorrelation plot or histogram of the errors. You can then
evaluate the performance of the network on a test set. If you are not satisfied with the
results, retrain the network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training
process. You can also save the trained network to test on new data or use for solving
similar classification problems. The app also provides the option to generate various
deployable versions of your trained network. For example, you can deploy the trained
network using MATLAB Compiler, MATLAB Coder, or Simulink Coder tools.

Required Products

• MATLAB
• Neural Network Toolbox

Open the Neural Net Time Series App

• MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization,
click the app icon.

• MATLAB command prompt: Enter ntstool.

Examples
• “Neural Network Time-Series Prediction and Modeling”
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See Also

See Also

Apps
Neural Net Fitting | Neural Net Clustering | Neural Net Pattern Recognition

Functions
narnet | narxnet

Topics
“Neural Network Time-Series Prediction and Modeling”
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Autoencoder class

Autoencoder class

Description

An Autoencoder object contains an autoencoder network, which consists of an encoder
and a decoder. The encoder maps the input to a hidden representation. The decoder
attempts to map this representation back to the original input.

Construction

autoenc = trainAutoencoder(X) returns an autoencoder trained using the training
data in X.

autoenc = trainAutoencoder(X,hiddenSize) returns an autoencoder with the
hidden representation size of hiddenSize.

autoenc = trainAutoencoder( ___ ,Name,Value) for any of the above input
arguments with additional options specified by one or more Name,Value pair arguments.

Input Arguments

X — Training data
matrix | cell array of image data

Training data, specified as a matrix of training samples or a cell array of image data. If X
is a matrix, then each column contains a single sample. If X is a cell array of image data,
then the data in each cell must have the same number of dimensions. The image data
can be pixel intensity data for gray images, in which case, each cell contains an m-by-n
matrix. Alternatively, the image data can be RGB data, in which case, each cell contains
an m-by-n-3 matrix.
Data Types: single | double | cell

hiddenSize — Size of hidden representation of the autoencoder
10 (default) | positive integer value
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Size of hidden representation of the autoencoder, specified as a positive integer value.
This number is the number of neurons in the hidden layer.
Data Types: single | double

Properties

HiddenSize — Size of the hidden representation
a positive integer value

Size of the hidden representation in the hidden layer of the autoencoder, stored as a
positive integer value.
Data Types: double

EncoderTransferFunction — Name of the transfer function for the encoder
string

Name of the transfer function for the encoder, stored as a string.
Data Types: char

EncoderWeights — Weights for the encoder
matrix

Weights for the encoder, stored as a matrix.
Data Types: double

EncoderBiases — Bias values for the encoder
vector

Bias values for the encoder, stored as a vector.
Data Types: double

DecoderTransferFunction — Name of the transfer function for the decoder
string

Name of the transfer function for the decoder, stored as a string.
Data Types: char
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DecoderWeights — Weights for the decoder
matrix

Weights for the decoder, stored as a matrix.
Data Types: double

DecoderBiases — Bias values for the decoder
vector

Bias values for the decoder, stored as a vector.
Data Types: double

TrainingParameters — Parameters that trainAutoencoder uses for training the
autoencoder
structure

Parameters that trainAutoencoder uses for training the autoencoder, stored as a
structure.
Data Types: struct

ScaleData — Indicator for data that is rescaled
true or 1 (default) | false or 0

Indicator for data that is rescaled while passing to the autoencoder, stored as either true
or false.

Autoencoders attempt to replicate their input at their output. For it to be possible, the
range of the input data must match the range of the transfer function for the decoder.
trainAutoencoder automatically scales the training data to this range when training
an autoencoder. If the data was scaled while training an autoencoder, the predict,
encode, and decode methods also scale the data.

Data Types: logical

Methods

decode Decode encoded data
encode Encode input data
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generateFunction Generate a MATLAB function to run the
autoencoder

generateSimulink Generate a Simulink model for the
autoencoder

network Convert Autoencoder object into network
object

plotWeights Plot a visualization of the weights for the
encoder of an autoencoder

predict Reconstruct the inputs using trained
autoencoder

stack Stack encoders from several autoencoders
together

view View autoencoder

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

See Also

See Also
trainAutoencoder

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2015b
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trainAutoencoder

Train an autoencoder

Syntax

autoenc = trainAutoencoder(X)

autoenc = trainAutoencoder(X,hiddenSize)

autoenc = trainAutoencoder( ___ ,Name,Value)

Description

autoenc = trainAutoencoder(X) returns an autoencoder, autoenc, trained using
the training data in X.

autoenc = trainAutoencoder(X,hiddenSize) returns an autoencoder autoenc,
with the hidden representation size of hiddenSize.

autoenc = trainAutoencoder( ___ ,Name,Value) returns an autoencoder
autoenc, for any of the above input arguments with additional options specified by one
or more Name,Value pair arguments.

For example, you can specify the sparsity proportion or the maximum number of training
iterations.

Examples

Train Sparse Autoencoder

Load the sample data.

X = abalone_dataset;

X is an 8-by-4177 matrix defining eight attributes for 4177 different abalone shells:
sex (M, F, and I (for infant)), length, diameter, height, whole weight, shucked
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weight, viscera weight, shell weight. For more information on the dataset, type help
abalone_dataset in the command line.

Train a sparse autoencoder with default settings.

autoenc = trainAutoencoder(X);

Reconstruct the abalone shell ring data using the trained autoencoder.

XReconstructed = predict(autoenc,X);

Compute the mean squared reconstruction error.

mseError = mse(X-XReconstructed)

mseError =

    0.0167

Train Autoencoder with Specified Options

Load the sample data.

X = abalone_dataset;

X is an 8-by-4177 matrix defining eight attributes for 4177 different abalone shells:
sex (M, F, and I (for infant)), length, diameter, height, whole weight, shucked
weight, viscera weight, shell weight. For more information on the dataset, type help
abalone_dataset in the command line.

Train a sparse autoencoder with hidden size 4, 400 maximum epochs, and linear transfer
function for the decoder.

autoenc = trainAutoencoder(X,4,'MaxEpochs',400,...

'DecoderTransferFunction','purelin');

Reconstruct the abalone shell ring data using the trained autoencoder.

XReconstructed = predict(autoenc,X);

Compute the mean squared reconstruction error.
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mseError = mse(X-XReconstructed)

mseError =

    0.0045

Reconstruct Observations Using Sparse Autoencoder

Generate the training data.

rng(0,'twister'); % For reproducibility

n = 1000;

r = linspace(-10,10,n)';

x = 1 + r*5e-2 + sin(r)./r + 0.2*randn(n,1);

Train autoencoder using the training data.

hiddenSize = 25;

autoenc = trainAutoencoder(x',hiddenSize,...

        'EncoderTransferFunction','satlin',...

        'DecoderTransferFunction','purelin',...

        'L2WeightRegularization',0.01,...

        'SparsityRegularization',4,...

        'SparsityProportion',0.10);

Generate the test data.

n = 1000;

r = sort(-10 + 20*rand(n,1));

xtest = 1 + r*5e-2 + sin(r)./r + 0.4*randn(n,1);

Predict the test data using the trained autoencoder, autoenc .

xReconstructed = predict(autoenc,xtest');

Plot the actual test data and the predictions.

figure;

plot(xtest,'r.');

hold on

plot(xReconstructed,'go');
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Reconstruct Handwritten Digit Images Using Sparse Autoencoder

Load the training data.

X = digitTrainCellArrayData;

The training data is a 1-by-5003 cell array, where each cell containing a 28-by-28 matrix
representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

hiddenSize = 25;

autoenc = trainAutoencoder(X,hiddenSize,...

        'L2WeightRegularization',0.004,...
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        'SparsityRegularization',4,...

        'SparsityProportion',0.15);

Load the test data.

Xnew = digitTestCellArrayData;

The test data is a 1-by-4997 cell array, with each cell containing a 28-by-28 matrix
representing a synthetic image of a handwritten digit.

Reconstruct the test image data using the trained autoencoder, autoenc.

xReconstructed = predict(autoenc,Xnew);

View the actual test data.

figure;

for i = 1:20

    subplot(4,5,i);

    imshow(X{i});

end
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View the reconstructed test data.

figure;

for i = 1:20

    subplot(4,5,i);

    imshow(xReconstructed{i});

end
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• “Construct Deep Network Using Autoencoders”

Input Arguments

X — Training data
matrix | cell array of image data

Training data, specified as a matrix of training samples or a cell array of image data. If X
is a matrix, then each column contains a single sample. If X is a cell array of image data,
then the data in each cell must have the same number of dimensions. The image data
can be pixel intensity data for gray images, in which case, each cell contains an m-by-n
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matrix. Alternatively, the image data can be RGB data, in which case, each cell contains
an m-by-n-3 matrix.
Data Types: single | double | cell

hiddenSize — Size of hidden representation of the autoencoder
10 (default) | positive integer value

Size of hidden representation of the autoencoder, specified as a positive integer value.
This number is the number of neurons in the hidden layer.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'EncoderTransferFunction','satlin','L2WeightRegularization',0.05

specifies the transfer function for the encoder as the positive saturating linear transfer
function and the L2 weight regularization as 0.05.

'EncoderTransferFunction' — Transfer function for the encoder
'logsig' (default) | 'satlin'

Transfer function for the encoder, specified as the comma-separated pair consisting of
'EncoderTransferFunction' and one of the following.

Transfer Function Option Definition

'logsig' Logistic sigmoid function

f z
e z

( ) =
+

-

1

1
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Transfer Function Option Definition

'satlin' Positive saturating linear transfer function
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z

z z

z

( ) =

£

< <

≥

Ï

Ì
Ô

Ó
Ô

0 0

0 1

1 1

,

,

if 

, if 

if  

Example: 'EncoderTransferFunction','satlin'

'DecoderTransferFunction' — Transfer function for the decoder
'logsig' (default) | 'satlin' | 'purelin'

Transfer function for the decoder, specified as the comma-separated pair consisting of
'DecoderTransferFunction' and one of the following.

Transfer Function Option Definition

'logsig' Logistic sigmoid function

f z
e z

( ) =
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1

1

'satlin' Positive saturating linear transfer function
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'purelin' Linear transfer function

f z z( ) =

Example: 'DecoderTransferFunction','purelin'

'MaxEpochs' — Maximum number of training epochs
1000 (default) | positive integer value

Maximum number of training epochs or iterations, specified as the comma-separated pair
consisting of 'MaxEpochs' and a positive integer value.
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Example: 'MaxEpochs',1200

'L2WeightRegularization' — The coefficient for the L2 weight regularizer
0.001 (default) | a positive scalar value

The coefficient for the L2 weight regularizer in the cost function (LossFunction),
specified as the comma-separated pair consisting of 'L2WeightRegularization' and a
positive scalar value.
Example: 'L2WeightRegularization',0.05

'LossFunction' — Loss function to use for training
'msesparse' (default)

Loss function to use for training, specified as the comma-separated pair consisting of
'LossFunction' and 'msesparse'. It corresponds to the mean squared error function
adjusted for training a sparse autoencoder as follows:

E
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x xkn kn
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n

N

= -( ) +

==
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1 2

11

ˆ *

mean squared error
1 24444 34444

l Wwweights

L

sparsity

2

regularization
sparsity

regulariz

1 24 34

+ b * W

aation

1 24 34

,

where λ is the coefficient for the L2 regularization term and β is the coefficient for
the sparsity regularization term. You can specify the values of λ and β by using the
L2WeightRegularization and SparsityRegularization name-value pair
arguments, respectively, while training an autoencoder.

'ShowProgressWindow' — Indicator to show the training window
true (default) | false

Indicator to show the training window, specified as the comma-separated pair consisting
of 'ShowProgressWindow' and either true or false.

Example: 'ShowProgressWindow',false

'SparsityProportion' — Desired proportion of training examples a neuron reacts to
0.05 (default) | positive scalar value in the range from 0 to 1

Desired proportion of training examples a neuron reacts to, specified as the comma-
separated pair consisting of 'SparsityProportion' and a positive scalar value.
Sparsity proportion is a parameter of the sparsity regularizer. It controls the sparsity
of the output from the hidden layer. A low value for SparsityProportion usually leads to

1-573



1 Functions — Alphabetical List

each neuron in the hidden layer "specializing" by only giving a high output for a small
number of training examples. Hence, a low sparsity proportion encourages higher degree
of sparsity. See Sparse Autoencoders.
Example: 'SparsityProportion',0.01 is equivalent to saying that each neuron in
the hidden layer should have an average output of 0.1 over the training examples.

'SparsityRegularization' — Coefficient that controls the impact of the sparsity
regularizer
1 (default) | a positive scalar value

Coefficient that controls the impact of the sparsity regularizer in the cost function,
specified as the comma-separated pair consisting of 'SparsityRegularization' and a
positive scalar value.
Example: 'SparsityRegularization',1.6

'TrainingAlgorithm' — The algorithm to use for training the autoencoder
'trainscg' (default)

The algorithm to use for training the autoencoder, specified as the comma-separated pair
consisting of 'TrainingAlgorithm' and 'trainscg'. It stands for scaled conjugate
gradient descent [1].

'ScaleData' — Indicator to rescale the input data
true (default) | false

Indicator to rescale the input data, specified as the comma-separated pair consisting of
'ScaleData' and either true or false.

Autoencoders attempt to replicate their input at their output. For it to be possible, the
range of the input data must match the range of the transfer function for the decoder.
trainAutoencoder automatically scales the training data to this range when training
an autoencoder. If the data was scaled while training an autoencoder, the predict,
encode, and decode methods also scale the data.

Example: 'ScaleData',false

'UseGPU' — Indicator to use GPU for training
false (default) | true

Indicator to use GPU for training, specified as the comma-separated pair consisting of
'UseGPU' and either true or false.
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Example: 'UseGPU',true

Output Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an Autoencoder object. For information on the
properties and methods of this object, see Autoencoder class page.

Definitions

Autoencoders

An autoencoder is a neural network which is trained to replicate its input at its
output. Autoencoders can be used as tools to learn deep neural networks. Training an
autoencoder is unsupervised in the sense that no labeled data is needed. The training
process is still based on the optimization of a cost function. The cost function measures
the error between the input x and its reconstruction at the output x̂ .

An autoencoder is composed of an encoder and a decoder. The encoder and decoder can
have multiple layers, but for simplicity consider that each of them has only one layer.

If the input to an autoencoder is a vector x Œ¡
D

x , then the encoder maps the vector x to

another vector z Œ
( )

¡
D

1

 as follows:

z W x b
1 1 11( ) ( ) ( )

= +( )
( )

h ,

where the superscript (1) indicates the first layer. h
D D1

1 1( ) ( ) ( )

Æ: ¡ ¡  is a transfer

function for the encoder, W
D D

x1
1

( ) ¥
Œ

( )

¡  is a weight matrix, and b
D1

1( )
Œ

( )

¡  is a bias
vector. Then, the decoder maps the encoded representation z back into an estimate of the
original input vector, x, as follows:
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ˆ ,x W x b= +( )
( ) ( ) ( )
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where the superscript (2) represents the second layer. h
D D
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function for the decoder, W
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x
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Œ¡  is a bias
vector.

Sparse Autoencoders

Encouraging sparsity of an autoencoder is possible by adding a regularizer to the cost
function [2]. This regularizer is a function of the average output activation value of a
neuron. The average output activation measure of a neuron i is defined as:
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1

where n is the total number of training examples. xj is the jth training example, w
i

T1( )  is

the ith row of the weight matrix W 1( ) , and b
i

1( )  is the ith entry of the bias vector, b 1( ) .
A neuron is considered to be ‘firing’, if its output activation value is high. A low output
activation value means that the neuron in the hidden layer fires in response to a small
number of the training examples. Adding a term to the cost function that constrains the
values of r̂

i  to be low encourages the autoencoder to learn a representation, where each
neuron in the hidden layer fires to a small number of training examples. That is, each
neuron specializes by responding to some feature that is only present in a small subset of
the training examples.

Sparsity Regularization

Sparsity regularizer attempts to enforce a constraint on the sparsity of the output from
the hidden layer. Sparsity can be encouraged by adding a regularization term that takes
a large value when the average activation value, r̂

i , of a neuron i and its desired value,
r , are not close in value [2]. One such sparsity regularization term can be the Kullback-
Leibler divergence.
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Kullback-Leibler divergence is a function for measuring how different two distributions
are. In this case, it takes the value zero when r  and r̂

i  are equal to each other, and
becomes larger as they diverge from each other. Minimizing the cost function forces this
term to be small, hence r  and r̂

i  to be close to each other. You can define the desired
value of the average activation value using the SparsityProportion name-value pair
argument while training an autoencoder.

L2 Regularization

When training a sparse autoencoder, it is possible to make the sparsity regulariser small
by increasing the values of the weights w(l) and decreasing the values of z(1) [2]. Adding a
regularization term on the weights to the cost function prevents it from happening. This
term is called the L2 regularization term and is defined by:
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2

,

where L is the number of hidden layers, n is the number of observations (examples), and
k is the number of variables in the training data.

Cost Function

The cost function for training a sparse autoencoder is an adjusted mean squared error
function as follows:

E
N

x xkn kn

k

K

n

N

= -( ) +

==
ÂÂ

1 2

11

ˆ *

mean squared error
1 24444 34444

l Wwweights

L

sparsity

2

regularization
sparsity

regulariz

1 24 34

+ b * W

aation

1 24 34

,

where λ is the coefficient for the L2 regularization term and β is the coefficient for
the sparsity regularization term. You can specify the values of λ and β by using the
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L2WeightRegularization and SparsityRegularization name-value pair
arguments, respectively, while training an autoencoder.
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trainSoftmaxLayer

Train a softmax layer for classification

Syntax

net = trainSoftmaxLayer(X,T)

net = trainSoftmaxLayer(X,T,Name,Value)

Description

net = trainSoftmaxLayer(X,T) trains a softmax layer, net, on the input data X and
the targets T.

net = trainSoftmaxLayer(X,T,Name,Value) trains a softmax layer, net, with
additional options specified by one or more of the Name,Value pair arguments.

For example, you can specify the loss function.

Examples

Classify Using Softmax Layer

Load the sample data.

[X,T] = iris_dataset;

X is a 4x150 matrix of four attributes of iris flowers: Sepal length, sepal width, petal
length, petal width.

T is a 3x150 matrix of associated class vectors defining which of the three classes each
input is assigned to. Each row corresponds to a dummy variable representing one of the
iris species (classes). In each column, a 1 in one of the three rows represents the class
that particular sample (observation or example) belongs to. There is a zero in the rows for
the other classes that the observation does not belong to.
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Train a softmax layer using the sample data.

net = trainSoftmaxLayer(X,T);

Classify the observations into one of the three classes using the trained softmax layer.

Y = net(X);

Plot the confusion matrix using the targets and the classifications obtained from the
softmax layer.

plotconfusion(T,Y);
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Input Arguments

X — Training data
m-by-n matrix
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Training data, specified as an m-by-n matrix, where m is the number of variables in
training data, and n is the number of observations (examples). Hence, each column of X
represents a sample.
Data Types: single | double

T — Target data
k-by-n matrix

Target data, specified as a k-by-n matrix, where k is the number of classes, and n is the
number of observations. Each row is a dummy variable representing a particular class.
In other words, each column represents a sample, and all entries of a column are zero
except for a single one in a row. This single entry indicates the class for that sample.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'MaxEpochs',400,'ShowProgressWindow',false specifies the maximum
number of iterations as 400 and hides the training window.

'MaxEpochs' — Maximum number of training iterations
1000 (default) | positive integer value

Maximum number of training iterations, specified as the comma-separated pair
consisting of 'MaxEpochs' and a positive integer value.

Example: 'MaxEpochs',500

Data Types: single | double

'LossFunction' — Loss function for the softmax layer
'crossentropy' (default) | 'mse'

Loss function for the softmax layer, specified as the comma-separated pair consisting of
'LossFunction' and either 'crossentropy' or 'mse'.

mse stands for mean squared error function, which is given by:
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where n is the number of training examples, and k is the number of classes. tij  is the ijth

entry of the target matrix, T, and yij  is the ith output from the autoencoder when the
input vector is xj.

The cross entropy function is given by:
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Example: 'LossFunction','mse'

'ShowProgressWindow' — Indicator to display the training window
true (default) | false

Indicator to display the training window during training, specified as the comma-
separated pair consisting of 'ShowProgressWindow' and either true or false.

Example: 'ShowProgressWindow',false

Data Types: logical

'TrainingAlgorithm' — Training algorithm
'trainscg' (default)

Training algorithm used to train the softmax layer, specified as the comma-separated
pair consisting of 'trainscg', which stands for scale conjugate gradient.

Example: 'TrainingAlgorithm','trainscg'

Output Arguments

net — Softmax layer for classification
network object
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Softmax layer for classification, returned as a network object. The softmax layer, net, is
the same size as the target T.

See Also

See Also
stack | trainAutoencoder

Introduced in R2015b
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decode
Class: Autoencoder

Decode encoded data

Syntax

Y = decode(autoenc,Z)

Description

Y = decode(autoenc,Z)returns the decoded data Y, using the autoencoder autoenc.

Input Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned by the trainAutoencoder function as an object of the
Autoencoder class.

Z — Data encoded by autoenc
matrix

Data encoded by autoenc, specified as a matrix. Each column of Z represents an encoded
sample (observation).
Data Types: single | double

Output Arguments

Y — Decoded data
matrix | cell array of image data

Decoded data, returned as a matrix or a cell array of image data.
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If the autoencoder autoenc was trained on a cell array of image data, then Y is also a
cell array of images.

If the autoencoder autoenc was trained on a matrix, then Y is also a matrix, where each
column of Y corresponds to one sample or observation.

Examples

Decode Encoded Data For New Images

Load the training data.

X = digitTrainCellArrayData;

X is a 1-by-5003 cell array, where each cell contains a 28-by-28 matrix representing a
synthetic image of a handwritten digit.

Train an autoencoder using the training data with a hidden size of 15.

hiddenSize = 15;

autoenc = trainAutoencoder(X,hiddenSize);

Extract the encoded data for new images using the autoencoder.

Xnew = digitTestCellArrayData;

features = encode(autoenc,Xnew);

Decode the encoded data from the autoencoder.

Y = decode(autoenc,features);

Y is a 1-by-4997 cell array, where each cell contains a 28-by-28 matrix representing a
synthetic image of a handwritten digit.

Algorithms

If the input to an autoencoder is a vector x Œ¡
D

x , then the encoder maps the vector x to

another vector z Œ
( )

¡
D

1

 as follows:

1-586



 decode

z W x b
1 1 11( ) ( ) ( )

= +( )
( )

h ,

where the superscript (1) indicates the first layer. h
D D1

1 1( ) ( ) ( )

Æ: ¡ ¡  is a transfer

function for the encoder, W
D D

x1
1

( ) ¥
Œ

( )

¡  is a weight matrix, and b
D1

1( )
Œ

( )

¡  is a bias
vector. Then, the decoder maps the encoded representation z back into an estimate of the
original input vector, x, as follows:

ˆ ,x W x b= +( )
( ) ( ) ( )

h
2 2 2

where the superscript (2) represents the second layer. h
D D

x x
2( )

Æ: ¡ ¡  is the transfer

function for the decoder, W
D D

x1
1

( ) ¥
Œ

( )

¡  is a weight matrix, and b
D

x
2( )

Œ¡  is a bias
vector.

See Also

See Also
encode | trainAutoencoder
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encode
Class: Autoencoder

Encode input data

Syntax

Z = encode(autoenc,Xnew)

Description

Z = encode(autoenc,Xnew) returns the encoded data, Z, for the input data Xnew,
using the autoencoder, autoenc.

Input Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Xnew — Input data
matrix | cell array of image data | array of single image data

Input data, specified as a matrix of samples, a cell array of image data, or an array of
single image data.

If the autoencoder autoenc was trained on a matrix, where each column represents
a single sample, then Xnew must be a matrix, where each column represents a single
sample.

If the autoencoder autoenc was trained on a cell array of images, then Xnew must either
be a cell array of image data or an array of single image data.
Data Types: single | double | cell
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Output Arguments

Z — Data encoded by autoenc
matrix

Data encoded by autoenc, specified as a matrix. Each column of Z represents an encoded
sample (observation).
Data Types: single | double

Examples

Encode Decoded Data for New Images

Load the sample data.

X = digitTrainCellArrayData;

X is a 1-by-5003 cell array, where each cell contains a 28-by-28 matrix representing a
synthetic image of a handwritten digit.

Train an autoencoder with a hidden size of 50 using the training data.

autoenc = trainAutoencoder(X,50);

Encode decoded data for new image data.

Xnew = digitTestCellArrayData;

Z = encode(autoenc,Xnew);

Xnew is a 1-by-4997 cell array. Z is a 50-by-4997 matrix, where each column represents
the image data of one handwritten digit in the new data Xnew.

Algorithms

If the input to an autoencoder is a vector x Œ¡
D

x , then the encoder maps the vector x to

another vector z Œ
( )

¡
D

1

 as follows:
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generateFunction
Class: Autoencoder

Generate a MATLAB function to run the autoencoder

Syntax

generateFunction(autoenc)

generateFunction(autoenc,pathname)

generateFunction(autoenc,pathname,Name,Value)

Description

generateFunction(autoenc) generates a complete stand-alone function in the
current directory, to run the autoencoder autoenc on input data.

generateFunction(autoenc,pathname) generates a complete stand-alone function to
run the autoencoder autoenc on input data in the location specified by pathname.

generateFunction(autoenc,pathname,Name,Value) generates a complete stand-
alone function with additional options specified by the Name,Value pair argument.

Input Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

pathname — Location for generated function
string

Location for generated function, specified as a string.
Example: 'C:\MyDocuments\Autoencoders'

Data Types: char
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'ShowLinks' — Indicator to display the links to the generated code
false (default) | true

Indicator to display the links to the generated code in the command window, specified as
the comma-separated pair consisting of 'ShowLinks' and either true or false.

Example: 'ShowLinks',true

Data Types: logical

Examples

Generate MATLAB Function for Running Autoencoder

Load the sample data.

X = iris_dataset;

Train an autoencoder with 4 neurons in the hidden layer.

autoenc = trainAutoencoder(X,4);

Generate the code for running the autoencoder. Show the links to the MATLAB function.

generateFunction(autoenc)

MATLAB function generated: neural_function.m

To view generated function code: edit neural_function

For examples of using function: help neural_function

Generate the code for the autoencoder in a specific path.

generateFunction(autoenc,'H:\Documents\Autoencoder')

MATLAB function generated: H:\Documents\Autoencoder.m

To view generated function code: edit Autoencoder
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For examples of using function: help Autoencoder

Tips

• If you do not specify the path and the file name, generateFunction, by default,
creates the code in an m-file with the name neural_function.m. You can change
the file name after generateFunction generates it. Or you can specify the path and
file name using the pathname input argument in the call to generateFunction.

See Also

See Also
generateSimulink | genFunction

Introduced in R2015b
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generateSimulink
Class: Autoencoder

Generate a Simulink model for the autoencoder

Syntax

generateSimulink(autoenc)

Description

generateSimulink(autoenc) creates a Simulink model for the autoencoder, autoenc.

Input Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Examples

Generate Simulink Model for Autoencoder

Load the training data.

X = digitsmall_dataset;

The training data is a 1-by-500 cell array, where each cell containing a 28-by-28 matrix
representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

hiddenSize = 25;

autoenc = trainAutoencoder(X,hiddenSize,...

        'L2WeightRegularization',0.004,...
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        'SparsityRegularization',4,...

        'SparsityProportion',0.15);

Create a Simulink model for the autoencoder, autoenc.

generateSimulink(autoenc)

See Also

See Also
trainAutoencoder
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network
Class: Autoencoder

Convert Autoencoder object into network object

Syntax

net = network(autoenc)

Description

net = network(autoenc) returns a network object which is equivalent to the
autoencoder, autoenc.

Input Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Output Arguments

net — Neural network
network object

Neural network, that is equivalent to the autoencoder autoenc, returned as an object of
the network class.

Examples

Create Network from Autoencoder

Load the sample data.
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X = bodyfat_dataset;

X is a 13-by-252 matrix defining thirteen attributes for 252 people. For more information
on the data, type help bodyfat_dataset in the command line.

Train an autoencoder on the attribute data.

autoenc = trainAutoencoder(X);

Create a network object from the autoencoder, autoenc .

net = network(autoenc);

Predict the attributes using the network, net .

Xpred = net(X);

Fit a linear regression model between the actual and estimated attributes data. Compute
the estimated Pearson correlation coefficient, the slope and the intercept (bias) of the
regression model, using all attribute data as one data set.

[C, S, B] = regression(X, Xpred, 'one')

C =

    0.9997

S =

    0.9984

B =

    0.1170

The correlation coefficient is almost 1, which indicates that the attributes data and the
estimations from the neural network are highly close to each other.

Plot the actual data and the fitted line.
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plotregression(X, Xpred);
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The data appears to be on the fitted line, which visually supports the conclusion that the
predictions are very close to the actual data.

See Also

See Also
Autoencoder | trainAutoencoder

Introduced in R2015b
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plotWeights

Class: Autoencoder

Plot a visualization of the weights for the encoder of an autoencoder

Syntax

plotWeights(autoenc)

h = plotWeights(autoenc)

Description

plotWeights(autoenc) visualizes the weights for the autoencoder, autoenc.

h = plotWeights(autoenc) returns a function handle h, for the visualization of the
encoder weights for the autoencoder, autoenc.

Input Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Output Arguments

h — Image object
handle

Image object, returned as a handle.
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Examples

Visualize Learned Features

Load the training data.

X = digitTrainCellArrayData;

The training data is a 1-by-5003 cell array, where each cell contains a 28-by-28 matrix
representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer of 25 neurons.

hiddenSize = 25;

autoenc = trainAutoencoder(X,hiddenSize, ...

  'L2WeightRegularization',0.004, ...

  'SparsityRegularization',4, ...

  'SparsityProportion',0.2);

Visualize the learned features.

plotWeights(autoenc);
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Tips
• plotWeights allows the visualization of the features that the autoencoder learns.

Use it when the autoencoder is trained on image data. The visualization of the
weights has the same dimensions as the images used for training.

See Also

See Also
trainAutoencoder
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Introduced in R2015b
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predict
Class: Autoencoder

Reconstruct the inputs using trained autoencoder

Syntax

Y = predict(autoenc,X)

Description

Y = predict(autoenc,X) returns the predictions Y for the input data X, using the
autoencoder autoenc. The result Y is a reconstruction of X.

Input Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Xnew — Input data
matrix | cell array of image data | array of single image data

Input data, specified as a matrix of samples, a cell array of image data, or an array of
single image data.

If the autoencoder autoenc was trained on a matrix, where each column represents
a single sample, then Xnew must be a matrix, where each column represents a single
sample.

If the autoencoder autoenc was trained on a cell array of images, then Xnew must either
be a cell array of image data or an array of single image data.
Data Types: single | double | cell
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Output Arguments

Y — Predictions for the input data Xnew
matrix | cell array of image data | array of single image data

Predictions for the input data Xnew, returned as a matrix or a cell array of image data.

• If Xnew is a matrix, then Y is also a matrix, where each column corresponds to a single
sample (observation or example).

• If Xnew is a cell array of image data, then Y is also a cell array of image data, where
each cell contains the data for a single image.

• If Xnew is an array of a single image data, then Y is also an array of a single image
data.

Examples

Predict Continuous Measurements Using Trained Autoencoder

Load the training data.

X = iris_dataset;

The training data contains measurements on four attributes of iris flowers: Sepal length,
sepal width, petal length, petal width.

Train an autoencoder on the training data using the positive saturating linear transfer
function in the encoder and linear transfer function in the decoder.

autoenc = trainAutoencoder(X,'EncoderTransferFunction',...

'satlin','DecoderTransferFunction','purelin');

Reconstruct the measurements using the trained network, autoenc.

xReconstructed = predict(autoenc,X);

Plot the predicted measurement values along with the actual values in the training
dataset.

for i = 1:4

h(i) = subplot(1,4,i);

plot(X(i,:),'r.');

hold on
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plot(xReconstructed(i,:),'go');

hold off;

end

title(h(1),{'Sepal';'Length'});

title(h(2),{'Sepal';'Width'});

title(h(3),{'Petal';'Length'});

title(h(4),{'Petal';'Width'});

The red dots represent the training data and the green circles represent the
reconstructed data.

Reconstruct Handwritten Digit Images

Load the training data.
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X = digitTrainCellArrayData;

The training data is a 1-by-5000 cell array, where each cell containing a 28-by-28 matrix
representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

hiddenSize = 25;

autoenc = trainAutoencoder(X,hiddenSize,...

        'L2WeightRegularization',0.004,...

        'SparsityRegularization',4,...

        'SparsityProportion',0.15);

Load the test data.

x = digitTestCellArrayData;

The test data is a 1-by-5000 cell array, with each cell containing a 28-by-28 matrix
representing a synthetic image of a handwritten digit.

Reconstruct the test image data using the trained autoencoder, autoenc.

xReconstructed = predict(autoenc,x);

View the actual test data.

figure;

for i = 1:20

    subplot(4,5,i);

    imshow(X{i});

end
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View the reconstructed test data.

figure;

for i = 1:20

    subplot(4,5,i);

    imshow(xReconstructed{i});

end
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See Also

See Also
trainAutoencoder

Introduced in R2015b
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stack
Class: Autoencoder

Stack encoders from several autoencoders together

Syntax

stackednet = stack(autoenc1,autoenc2,...)

stackednet = stack(autoenc1,autoenc2,...,net1)

Description

stackednet = stack(autoenc1,autoenc2,...) returns a network object created
by stacking the encoders of the autoencoders, autoenc1, autoenc2, and so on.

stackednet = stack(autoenc1,autoenc2,...,net1) returns a network object
created by stacking the encoders of the autoencoders and the network object net1.

The autoencoders and the network object can be stacked only if their dimensions match.

Input Arguments

autoenc1 — Trained autoencoder
Autoencoder object

Trained autoencoder, specified as an Autoencoder object.

autoenc2 — Trained autoencoder
Autoencoder object

Trained autoencoder, specified as an Autoencoder object.

net1 — Trained neural network
network object

Trained neural network, specified as a network object. net1 can be a softmax layer,
trained using the trainSoftmaxLayer function.
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Output Arguments

stackednet — Stacked neural network
network object

Stacked neural network (deep network), returned as a network object

Examples

Create a Stacked Network

Load the training data.

[X,T] = iris_dataset;

Train an autoencoder with a hidden layer of size 5 and a linear transfer function for the
decoder. Set the L2 weight regularizer to 0.001, sparsity regularizer to 4 and sparsity
proportion to 0.05.

hiddenSize = 5;

autoenc = trainAutoencoder(X, hiddenSize, ...

    'L2WeightRegularization', 0.001, ...

    'SparsityRegularization', 4, ...

    'SparsityProportion', 0.05, ...

    'DecoderTransferFunction','purelin');

Extract the features in the hidden layer.

features = encode(autoenc,X);

Train a softmax layer for classification using the features .

softnet = trainSoftmaxLayer(features,T);

Stack the encoder and the softmax layer to form a deep network.

stackednet = stack(autoenc,softnet);

View the stacked network.

view(stackednet);
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• “Construct Deep Network Using Autoencoders”

Tips

• The size of the hidden representation of one autoencoder must match the input size of
the next autoencoder or network in the stack.

The first input argument of the stacked network is the input argument of the first
autoencoder. The output argument from the encoder of the first autoencoder is the
input of the second autoencoder in the stacked network. The output argument from
the encoder of the second autoencoder is the input argument to the third autoencoder
in the stacked network, and so on.

• The stacked network object stacknet inherits its training parameters from the final
input argument net1.

See Also

See Also
Autoencoder | trainAutoencoder

Topics
“Construct Deep Network Using Autoencoders”

Introduced in R2015b
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view
Class: Autoencoder

View autoencoder

Syntax

view(autoenc)

Description

view(autoenc) returns a diagram of the autoencoder, autoenc.

Input Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Examples

View Autoencoder

Load the training data.

X = iris_dataset;

Train an autoencoder with a hidden layer of size 5 and a linear transfer function for the
decoder. Set the L2 weight regularizer to 0.001, sparsity regularizer to 4 and sparsity
proportion to 0.05.

hiddenSize = 5;

autoenc = trainAutoencoder(X, hiddenSize, ...

    'L2WeightRegularization',0.001, ...
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    'SparsityRegularization',4, ...

    'SparsityProportion',0.05, ...

    'DecoderTransferFunction','purelin');

View the autoencoder.

view(autoenc)

See Also

See Also
trainAutoencoder

Introduced in R2015b
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AveragePooling2DLayer class

Average pooling layer object

Description

Average pooling layer class containing the pool size, the stride size, padding, and the
name of the layer. An average pooling layer performs down-sampling by dividing the
input into rectangular pooling regions and computing the average of each region. It
returns the averages for the pooling regions. The size of the pooling regions is determined
by the poolSize argument to the averagePooling2dLayer function.

Construction

avgpoollayer = averagePooling2dLayer(poolSize) creates a layer that performs
average pooling. poolSize specifies the dimensions of the rectangular region.

avgpoollayer = averagePooling2dLayer(poolSize, Name,Value) creates the
average pooling layer, with additional options specified by one or more Name,Value pair
arguments.

For more details, see averagePooling2dLayer.

Input Arguments

poolSize — Height and width of pooling region
scalar value | vector of two scalar values

Height and width of a pooling region, specified as a scalar value or a vector of two scalar
values.

• If poolSize is a scalar, then the height and the width of the pooling region are the
same.

• If poolSize is a vector, then the vector must be of the form [h w], where h is the
height and w is the width.
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If the Stride dimensions are less than the respective pooling dimensions, then the
pooling regions overlap.

Note that the padding dimensions (Padding) must be less than the pooling region
dimensions (poolSize).

Example: [2 1]

Data Types: single | double

Properties

PoolSize — Height and width of pooling region
scalar | vector of two scalar values

Height and width of a pooling region, stored as a vector of two scalar values, [h w], where
h is the height and w is the width.
Data Types: double

Stride — Step size for traversing input
[1 1] (default) | vector of two scalar values

Step size for traversing the input vertically and horizontally, stored as a vector of two
scalar values, [v h], where v is the vertical stride and h is the horizontal stride.
Data Types: double

Padding — Size of zero padding applied to borders of input
[0 0] (default) | vector of two scalar values

Size of zero padding applied vertically and horizontally to the borders of the input, stored
as a vector of two scalar values, [a b].

a is the padding applied to the top and the bottom and b is the padding applied to the left
and right of the input data.
Data Types: double

Name — Layer name
'' (default) | character vector

Layer name, specified by a character vector. If Name is set to '', then the software
automatically assigns a name at training time.
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Data Types: char

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

Examples

Average Pooling Layer with Non-Overlapping Pooling Regions

Create an average pooling layer with non-overlapping pooling regions. Set the layer to
down-sample by a factor of 2.

avgpoollayer = averagePooling2dLayer(2,'Stride',2)

avgpoollayer = 

  AveragePooling2DLayer with properties:

    PoolSize: [2 2]

      Stride: [2 2]

     Padding: [0 0]

        Name: ''

The height and width of the rectangular region (pool size) are both 2. This layer creates
pooling regions of size [2 2] and takes the average of the four elements in each region.
Because the step size for traversing the images vertically and horizontally (stride) is also
[2 2] the pooling regions do not overlap.

Average Pooling Layer with Overlapping Pooling Regions

Create an average pooling layer with overlapping pooling regions. Add padding for the
top and bottom of the input.

avgpoollayer = averagePooling2dLayer([3 2],'Stride',2,...

    'Padding',[1 0],'Name','avg1')

avgpoollayer = 

  AveragePooling2DLayer with properties:
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    PoolSize: [3 2]

      Stride: [2 2]

     Padding: [1 0]

        Name: 'avg1'

The height and width of the rectangular region (pool size) are 3 and 2. This layer creates
pooling regions of size [3 2] and takes the average of the six elements in each region.
Because the step size for stride) is [2 2] the pooling regions overlap.

A value of 1 for the Padding name-value pair indicates that averagepooling2dlayer
also adds a row of zeros to the top and bottom of the input data. 0 indicates that no
padding is added to the right and left of the input data.

You can display any of the properties by using dot notation. Display the name of the
layer.

avgpoollayer.Name 

ans =

avg1

See Also

See Also
averagePooling2dLayer | maxPooling2dLayer

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a
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ClassificationOutputLayer class

Classification output layer

Description

The classification output layer, containing the name of the loss function that is used for
training the network, the size of the output, and the class labels.

Construction

classoutputlayer = classificationLayer() returns a classification output layer
for a neural network.

classoutputlayer = classificationLayer(Name,Value) returns the
classification output layer, with additional option specified by the Name,Value pair
argument.

Properties

OutputSize — Size of output
scalar value

Size of the output, stored as a scalar value. The software determines the size of the
output during training. For classification problems, this value is the number of labels in
the data. Before the training, the output size is set to 'auto'. After training, you can
reach the output size by indexing into the Layers property of the SeriesNetwork object.

Example: If the trained network is net, and the classificationOutputLayer
is the 7th layer in the network, you can display the output size by typing
net.Layers(7,1).OutputSize in the command window.

Data Types: single | double

LossFunction — Loss function for training
'crossentropyex'
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Loss function the software uses for training, stored as a character vector. Possible value
is 'crossentropyex', which stands for cross entropy function for k mutually exclusive
classes.
Data Types: char

ClassNames — Names of classes
empty cell array (before training) | cell array of class names (after training)

Names of the classes, stored as a cell array of class names determined during training.
Before training, this property is an empty cell array.
Data Types: cell

Name — Layer name
'' (default) | character vector

Layer name, specified by a character vector. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

Examples

Create Classification Output Layer

Create a classification output layer with the name 'coutput'.

coutputlayer = classificationLayer('Name','coutput')

coutputlayer = 

  ClassificationOutputLayer with properties:

            Name: 'coutput'
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      ClassNames: {1×0 cell}

      OutputSize: 'auto'

   Hyperparameters

    LossFunction: 'crossentropyex'

The default loss function for classification is cross entropy for  mutually exclusive
classes.

Definitions

Cross Entropy Function for k Mutually Exclusive Classes

For multi-class classification problems the software assigns each input to one of the k
mutually exclusive classes. The loss (error) function for this case is the cross entropy
function for a 1-of-k coding scheme [1]:
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References

[1] Bishop, C. M. Pattern Recognition and Machine Learning. New York, NY: Springer,
2006.

See Also

See Also
classificationLayer | regressionLayer | RegressionOutputLayer

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a
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Convolution2DLayer class

Convolutional layer

Description

A convolutional layer class containing filter size, number of channels, layer name,
weights and bias data.

Construction

convlayer = convolutional2dLayer(filterSize,numFilters) returns a layer
for 2-D convolution.

convlayer = convolutional2dLayer(filterSize,numFilters,Name,Value)

returns the convolutional layer, with additional options specified by one or more
Name,Value pair arguments.

For more details, see convolution2dLayer function reference page.

Input Arguments

filterSize — Height and width of filters
integer value | vector of two integer values

Height and width of the filters, specified as an integer value or a vector of two integer
values. filterSize defines the size of the local regions to which the neurons connect in
the input.

• If filterSize is a scalar value, then the filters have the same height and width.
• If filterSize is a vector, then it must be of the form [h w], where h is the height

and w is the width.

Example: [5,5]

Data Types: single | double
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numFilters — Number of filters
integer value

Number of filters, specified as an integer value. numFilters represents the number
of neurons in the convolutional layer that connect to the same region in the input.
This parameter determines the number of channels (feature maps) in the output of the
convolutional layer.
Data Types: single | double

Properties

Stride — Step size for traversing input
[1 1] (default) | vector of two scalar values

Step size for traversing the input vertically and horizontally, stored as a vector of two
scalar values, [v h], where v is the vertical stride and h is the horizontal stride.
Data Types: double

Padding — Size of zero padding applied to borders of input
[0 0] (default) | vector of two scalar values

Size of zero padding applied vertically and horizontally to the borders of the input, stored
as a vector of two scalar values, [a b].

a is the padding applied to the top and the bottom and b is the padding applied to the left
and right of the input data.
Data Types: double

NumChannels — Number of channels for each filter
'auto' (default) | integer value

Number of channels for each filter, stored as 'auto' or an integer value.

If 'NumChannels' is auto, then the software infers the correct value for the number of
maps during training time.
Data Types: double | char

Weights — The layer weights
4-D array
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The weights for the convolutional layer, stored as a FilterSize(1)-
by-FilterSize(2)-by-NumChannels-by-NumFilters matrix.

Data Types: single

Bias — The layer biases
3-D array

The biases for the convolutional layer, stored as a 1-by-1-by-NumFilters matrix.

Data Types: single

WeightLearnRateFactor — Learning rate factor for weights
scalar value

Learning rate factor for the weights, stored as a scalar value.

The software multiplies this factor by the global learning rate to determine the learning
rate for the weights in this layer. For example, if WeightLearnRateFactor is 2, then
the learning rate for the weights in this layer is twice the current global learning rate.
The software determines the global learning rate based on the settings specified using
the trainingOptions function.

Data Types: double

WeightL2Factor — L2 regularization factor for weights
scalar value

L2 regularization factor for the weights, stored as a scalar value.

The software multiplies this factor with the global L2 regularization factor to determine
the learning rate for the weights in this layer. For example, if WeightL2Factor
is 2, then the L2 regularization for the weights in this layer is twice the global L2
regularization factor. You can specify the global L2 regularization factor using the
trainingOptions function.

Data Types: double

BiasLearnRateFactor — Learning rate factor for biases
scalar value

Learning rate factor of the biases, stored as a scalar value.

The software multiplies this factor with the global learning rate to determine the
learning rate for the biases in this layer. For example, if BiasLearnRateFactor is 2,
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then the learning rate for the biases in this layer is twice the current global learning
rate. The software determines the global learning rate based on the settings specified
using the trainingOptions function.

Data Types: double

BiasL2Factor — L2 regularization factor for biases
scalar value

L2 regularization factor for the biases, stored as a scalar value.

The software multiplies this factor with the global L2 regularization factor to determine
the learning rate for the biases in this layer. For example, if BiasL2Factor is 2, then
the L2 regularization for the biases in this layer is twice the global L2 regularization
factor. You can specify the global L2 regularization factor using the trainingOptions
function.
Data Types: double

Name — Layer name
'' (default) | character vector

Layer name, specified by a character vector. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

Examples

Create Convolutional Layer

Create a convolutional layer with 96 filters that have a height and width of 11, and use a
stride (step size) of 4 in the horizontal and vertical directions.

convlayer = convolution2dLayer(11,96,'Stride',4)
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convlayer = 

  Convolution2DLayer with properties:

                     Name: ''

               FilterSize: [11 11]

              NumChannels: 'auto'

               NumFilters: 96

                   Stride: [4 4]

                  Padding: [0 0]

                  Weights: []

                     Bias: []

    WeightLearnRateFactor: 1

           WeightL2Factor: 1

      BiasLearnRateFactor: 1

             BiasL2Factor: 0

You can display any of the properties separately by indexing into the object. For example,
display the filter size.

convlayer.FilterSize

ans =

    11    11

• “Specify Initial Weight and Biases in Convolutional Layer” on page 1-679

Algorithms

The default for the initial weights is a Gaussian distribution with a mean of 0 and a
standard deviation of 0.01. The default for the initial bias is 0. You can manually change
the initialization for the weights and bias. See “Specify Initial Weight and Biases in
Convolutional Layer” on page 1-679.

See Also

See Also
convolution2dLayer
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Topics
“Specify Initial Weight and Biases in Convolutional Layer” on page 1-679
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a
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CrossChannelNormalizationLayer class

Channel-wise local response normalization layer

Description

Channel-wise local response normalization layer class that contains the size of the
channel window, the hyperparameters for normalization, and the name of the layer.

Construction

localnormlayer = crossChannelNormalizationLayer(windowChannelSize)

returns a local response normalization layer, which carries out channel-wise
normalization [1].

localnormlayer = crossChannelNormalizationLayer(windowChannelSize,

Name,Value) returns a local response normalization layer, with additional options
specified by one or more Name,Value pair arguments.

For more details on the name-value pair arguments, see
crossChannelNormalizationLayer.

Input Arguments

windowChannelSize — The size of the channel window
positive integer

The size of the channel window, which controls the number of channels that are used for
the normalization of each element, specified as a positive integer.

For example, if this value is 3, the software normalizes each element by its neighbors in
the previous channel and the next channel.

If windowChannelSize is even, then the window is asymmetric. That is, the software
looks at the previous floor((w-1)/2) channels, and the following floor(w/2)
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channels. For example, if windowChannelSize is 4, the software normalizes each
element by its neighbor in the previous channel, and by its neighbors in the next two
channels.
Data Types: single | double

Properties

windowChannelSize — The size of the channel window
positive integer

The size of the channel window, stored as a positive integer.
Data Types: single | double

Alpha — α hyperparameter in the normalization
scalar value

α hyperparameter (the multiplier term) in the normalization, stored as a scalar value.
Data Types: single | double

Beta — β hyperparameter in the normalization
0.75 (default) | scalar value

β hyperparameter in the normalization, stored as a scalar value.
Data Types: single | double

K — K hyperparameter in the normalization
2 (default) | scalar value

K hyperparameter, the additive term, in the normalization, stored as a scalar value.
Data Types: single | double

Name — Layer name
'' (default) | character vector

Layer name, specified by a character vector. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char
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Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

Examples

Create Local Response Normalization Layer

Create a local response normalization layer for channel-wise normalization, where a
window of 5 channels will be used to normalize each element, and the additive constant
for the normalizer is 1.

localnormlayer = crossChannelNormalizationLayer(5,'K',1);

localnormlayer = 

  CrossChannelNormalizationLayer with properties:

    WindowChannelSize: 5

                Alpha: 1.0000e-04

                 Beta: 0.7500

                    K: 1

                 Name: ''

Definitions

Local Response Normalization

For each element 
x

 in the input, the layer computes a normalized value 
x

’  using

x
x

K
ss

windowChannelSize

’

*
,=

+Ê
ËÁ

ˆ
¯̃

a b

where K, α, and β  are the hyperparameters, and ss is the sum of squares of the elements
in the normalization window. This formula is slightly different than what is presented
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in [1]. You can obtain the equivalent formula by multiplying the alpha value by the
windowChannelSize.

References

[1] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep
Convolutional Neural Networks. " Advances in Neural Information Processing
Systems. Vol 25, 2012.

See Also

See Also
averagePooling2dLayer | convolution2dLayer |
crossChannelNormalizationLayer | maxPooling2dLayer

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a
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DropoutLayer class

Dropout layer

Description

A dropout layer class that contains the probability for dropping input elements and the
name of the layer. Dropout layer is used only during training.

Construction

droplayer = dropoutLayer() returns a dropout layer, that randomly sets input
elements to zero with a probability of 0.5. Dropout might help prevent overfitting.

droplayer = dropoutLayer(probability) returns a dropout layer, that randomly
sets input elements to zero with a probability specified by the probability argument.

droplayer = dropoutLayer( ___ , Name,Value) returns the dropout layer, with
the additional option specified by the Name,Value pair argument.

Input Arguments

probability — Probability for dropping out input elements
0.5 (default) | a scalar value in the range 0 to 1

Probability for dropping out input elements (neurons) during training time, specified as a
scalar value in the range from 0 to 1.

A higher number will result in more neurons being dropped during training.
Example: dropoutLayer(0.4)

Properties

Probability — Probability for dropping input elements with
a scalar value
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Probability to drop out input elements (neurons) with during training time, stored as a
scalar value.

Name — Layer name
'' (default) | character vector

Layer name, specified by a character vector. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

Examples

Create a Dropout Layer

Create a dropout layer, which randomly sets about 40% of the input to zero. Name the
layer as dropout1.

droplayer = dropoutLayer(0.4,'Name','dropout1')

droplayer = 

  DropoutLayer with properties:

    Probability: 0.4000

           Name: 'dropout1'

Definitions

Dropout Layer

A dropout layer randomly sets a layer’s input elements to zero with a given probability.
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This corresponds to temporarily dropping a randomly chosen unit and all of its
connections from the network during training. So, for each new input element, the
software randomly selects a subset of neurons, hence forms a different layer architecture.
These architectures use common weights, but because the learning does not depend on
specific neurons and connections, the dropout layer might help prevent overfitting [1],
[2].

References

[1] Srivastave, N., G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. "Dropout: A
Simple Way to Prevent Neural Networks from Overfitting." Journal of Machine
Learning Research. Vol. 15, pp. 1929-1958, 2014.

[2] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep
Convolutional Neural Networks. " Advances in Neural Information Processing
Systems. Vol 25, 2012.

See Also

See Also
dropoutLayer

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a
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FullyConnectedLayer class

Fully connected layer

Description

A fully connected layer class containing input and output size, layer name, and weights
and bias data.

Construction

fullconnectlayer = fullyConnectedLayer(outputSize) returns a fully
connected layer, in which the software multiplies the input by a matrix and then adds a
bias vector.

fullconnectlayer = fullyConnectedLayer(outputSize,Name,Value) returns
the fully connected layer, with additional options specified by one or more Name,Value
pair arguments.

For more details on the name-value pair arguments, see fullyConnectedLayer.

Input Arguments

outputSize — Size of output for fully connected layer
integer value

Size of the output for the fully connected layer, specified as an integer value. For
classification problems, if this is the last layer before the softmax layer, then the output
size must be equal to the number of classes in the data. For regression problems, if this
is the last layer before the regression layer, then the output size must be equal to the
number of response variables.
Data Types: single | double
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Properties

InputSize — Layer input size
a positive integer | 'auto'

Input size for the fully connected layer, stored as a positive integer or 'auto'. If
InputSize is 'auto', then the software automatically determines the input size during
training.
Data Types: double | char

OutputSize — Layer output size
a positive integer

Output size for the fully connected layer, stored as a positive integer.
Data Types: double

Weights — Layer weights
OutputSize-by-InputSize matrix

Weights for the fully connected layer, stored as an OutputSize-by-InputSize matrix.

Data Types: single

Bias — Layer biases
OutputSize-by-1 matrix

Biases for the fully connected layer, stored as an OutputSize-by-1 matrix.

Data Types: single

WeightLearnRateFactor — Learning rate factor for weights
scalar value

Learning rate factor for the weights, stored as a scalar value.

The software multiplies this factor by the global learning rate to determine the learning
rate for the weights in this layer. For example, if WeightLearnRateFactor is 2, then
the learning rate for the weights in this layer is twice the current global learning rate.
The software determines the global learning rate based on the settings specified using
the trainingOptions function.

Data Types: double
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WeightL2Factor — L2 regularization factor for weights
scalar value

L2 regularization factor for the weights, stored as a scalar value.

The software multiplies this factor with the global L2 regularization factor to determine
the learning rate for the weights in this layer. For example, if WeightL2Factor
is 2, then the L2 regularization for the weights in this layer is twice the global L2
regularization factor. You can specify the global L2 regularization factor using the
trainingOptions function.

Data Types: double

BiasLearnRateFactor — Learning rate factor for biases
scalar value

Learning rate factor of the biases, stored as a scalar value.

The software multiplies this factor with the global learning rate to determine the
learning rate for the biases in this layer. For example, if BiasLearnRateFactor is 2,
then the learning rate for the biases in this layer is twice the current global learning
rate. The software determines the global learning rate based on the settings specified
using the trainingOptions function.

Data Types: double

BiasL2Factor — L2 regularization factor for biases
scalar value

L2 regularization factor for the biases, stored as a scalar value.

The software multiplies this factor with the global L2 regularization factor to determine
the learning rate for the biases in this layer. For example, if BiasL2Factor is 2, then
the L2 regularization for the biases in this layer is twice the global L2 regularization
factor. You can specify the global L2 regularization factor using the trainingOptions
function.
Data Types: double

Name — Layer name
'' (default) | character vector

Layer name, specified by a character vector. If Name is set to '', then the software
automatically assigns a name at training time.
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Data Types: char

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

Examples

Create Fully Connected Layer

Create a fully connected layer with an output size of 10.

fullclayer = fullyConnectedLayer(10)

fullclayer = 

  FullyConnectedLayer with properties:

                  Weights: []

                     Bias: []

    WeightLearnRateFactor: 1

           WeightL2Factor: 1

      BiasLearnRateFactor: 1

             BiasL2Factor: 0

                InputSize: 'auto'

               OutputSize: 10

                     Name: ''

The software determines the input size and initializes the weights and bias at training
time.

• “Specify Initial Weight and Biases in Fully Connected Layer” on page 1-699

Algorithms

The default for the initial weights is a Gaussian distribution with a mean of 0 and a
standard deviation of 0.01. The default for the initial bias is 0. You can manually change
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the initialization for the weights and bias. See “Specify Initial Weight and Biases in Fully
Connected Layer” on page 1-699.

See Also

See Also
fullyConnectedLayer

Topics
“Specify Initial Weight and Biases in Fully Connected Layer” on page 1-699
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a
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ImageInputLayer class

Image input layer

Description
Image input layer class containing the input size, data transformation, and the layer
name.

Construction
inputlayer = imageInputLayer(inputSize) returns an image input layer.

inputlayer = imageInputLayer(inputSize, Name,Value) returns an image
input layer, with additional options specified by one or more Name,Value pair
arguments.

For more information on the name-value pair arguments, see imageInputLayer.

Input Arguments

inputSize — Size of input data
row vector of two or three integer numbers

Size of the input data, specified as a row vector of two integer numbers
corresponding to [height,width] or three integer numbers corresponding to
[height,width,channels].

If the inputSize is a vector of two numbers, then the software sets the channel size to 1.

Example: [200,200,3]

Data Types: single | double

Properties
inputSize — Size of input data
row vector of three integer numbers
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Size of the input data, stored as a row vector of three integer numbers corresponding to
[height,width,channels].

Example: [200,200,3]

Data Types: double

DataAugmentation — Data augmentation transforms
'none' (default) | 'randcrop' | 'randfliplr' | cell array of 'randcrop' and
'randfliplr'

Data augmentation transforms to use during training, stored as one of the following.

• 'none' — No data augmentation
• 'randcrop' — Take a random crop from the training image. The random crop has

the same size as the inputSize.
• 'randfliplr' — Randomly flip the input with a 50% chance in the vertical axis.
• Cell array of 'randcrop' and 'randfliplr'. The software applies the

augmentation in the order specified in the cell array.

Data Types: char | cell

Normalization — Data transformation
'zerocenter' (default) | 'none'

Data transformation to apply every time data is forward propagated through the input
layer, stored as one of the following.

• 'zerocenter' — The software subtracts its mean from the training set.
• 'none' — No transformation.

Data Types: char

Name — Layer name
'' (default) | character vector

Layer name, specified by a character vector. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char
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Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

Examples

Create and Display Image Input Layer

Create an image input layer for 28-by-28 color images. Specify that the software flips the
images from left to right at training time with a probability of 0.5.

inputlayer = imageInputLayer([28 28 3],'DataAugmentation','randfliplr');

inputlayer = 

  ImageInputLayer with properties:

                Name: ''

           InputSize: [28 28 3]

    DataAugmentation: 'randfliplr'

       Normalization: 'zerocenter'

Display the input size.

inputlayer.InputSize

ans =

    28    28     3

See Also

See Also
convolution2dLayer | fullyConnectedLayer | imageInputLayer |
maxPooling2dLayer

Topics
Class Attributes (MATLAB)
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Property Attributes (MATLAB)

Introduced in R2016a
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Layer class

Network layer

Description

Network layer class containing the layer information. Each layer in the architecture of a
convolutional neural network is of Layer class.

Construction

To define the architecture of a convolutional neural network, create a vector of layers
directly. Alternatively, create the layers individually, and then concatenate them. See
“Construct Network Architecture” on page 1-646.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

Indexing

You can access the properties of a layer in the network architecture by indexing into the
vector of layers and using dot notation. For example, an image input layer is the first
layer in a convolutional neural network. To access the InputSize property of the image
input layer, use layers(1).InputSize. For more examples, see “Access Layers and
Properties in Layer Array” on page 1-647.

Examples

Construct Network Architecture

This example shows how to construct a network architecture.
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Define a convolutional neural network architecture for classification, with one
convolutional layer, a ReLU layer, and a fully connected layer.

cnnarch = [...

    imageInputLayer([28 28 3])

    convolution2dLayer([5 5],10)

    reluLayer

    fullyConnectedLayer(10)

    softmaxLayer

    classificationLayer

    ];

Alternatively you can create the layers individually and then concatenate them.

input = imageInputLayer([28 28 3]);

conv = convolution2dLayer([5 5],10);

relu = reluLayer;

fcl = fullyConnectedLayer(10);

sml = softmaxLayer;

col = classificationLayer;

cnnarch = [...

    input

    conv

    relu

    fcl

    sml

    col];

cnnarch is a 6-by-1 array of layers.

Display the class for this array of layers.

class(cnnarch)

ans =

    'nnet.cnn.layer.Layer'

cnnarch is a Layer object.

Access Layers and Properties in Layer Array

This example shows how to access layers and properties in a layer array.
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Define a convolutional neural network architecture for classification, with only one
convolutional layer, a ReLU layer, and a fully connected layer.

layers = [...

    imageInputLayer([28 28 3])

    convolution2dLayer([5 5],10)

    reluLayer

    fullyConnectedLayer(10)

    softmaxLayer

    classificationLayer];

Display the image input layer.

layers(1)

ans = 

  ImageInputLayer with properties:

                Name: ''

           InputSize: [28 28 3]

   Hyperparameters

    DataAugmentation: 'none'

       Normalization: 'zerocenter'

Extract the input size.

layers(1).InputSize

ans =

    28    28     3

Display the stride for the convolutional layer.

layers(2).Stride

ans =
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     1     1

Access the bias learn rate factor for the fully connected layer.

layers(4).BiasLearnRateFactor

ans =

     1

Create Typical Convolutional Neural Networks

Create typical convolutional neural networks for classification and regression problems.

Create a Convolutional Neural Network for Classification

Input Layer

Create the input layer. Suppose that the input images are grayscale with size 28-by-28.
Create an image input layer of size 28-by-28-by-1.

inputLayer = imageInputLayer([28 28 1]);

Middle Layers

Next create the middle layers of the network. First, create a convolutional layer with
12 4-by-3 filters, a ReLU layer, a local response normalization layer, and a max pooling
layer with 2-by-2 non-overlapping pooling regions.

middleLayers = [...

    convolution2dLayer([4 3],12)

    reluLayer

    crossChannelNormalizationLayer(4)

    maxPooling2dLayer(2,'Stride',2)];

Next, add a convolutional layer with 16 5-by-5 filters, a ReLU layer, a local response
normalization layer, and a max pooling with 2-by-2 non-overlapping pooling regions.

middleLayers = [...

    middleLayers

    convolution2dLayer(5,16)
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    reluLayer

    crossChannelNormalizationLayer(4)

    maxPooling2dLayer(2,'Stride',2)];

Next, add a fully connected layer of size 256, and a ReLU layer.

middleLayers = [...

    middleLayers

    fullyConnectedLayer(256)

    reluLayer];

Final Layers

Construct the final layers of the network. Suppose that there are 10 classes. Create a
fully connected layer of size 10 followed by a softmax layer and a classification layer.

finalLayers = [...

    fullyConnectedLayer(10)

    softmaxLayer

    classificationLayer];

Combine the input, middle and final layers to create the network architecture.

layers = [...

    inputLayer

    middleLayers

    finalLayers];

Alternatively, you can create the full network at once.

layers = [...

    imageInputLayer([28 28 1])

    convolution2dLayer([4 3],12)

    reluLayer

    crossChannelNormalizationLayer(4)

    maxPooling2dLayer(2,'Stride',2)

    convolution2dLayer(5,16)

    reluLayer

    crossChannelNormalizationLayer(4)

    maxPooling2dLayer(2,'Stride',2)

    fullyConnectedLayer(256)

    reluLayer

    fullyConnectedLayer(10)

    softmaxLayer

    classificationLayer];
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Create a Convolutional Neural Network for Regression

Create a convolutional neural network for regression using a similar architecture as the
classification network. Replace the final three layers with a fully connected layer of size 1
and a regression layer.

layers = [...

    imageInputLayer([28 28 1])

    convolution2dLayer([4 3],12)

    reluLayer

    crossChannelNormalizationLayer(4)

    maxPooling2dLayer(2,'Stride',2)

    convolution2dLayer(5,16)

    reluLayer

    crossChannelNormalizationLayer(4)

    maxPooling2dLayer(2,'Stride',2)

    fullyConnectedLayer(256)

    reluLayer

    fullyConnectedLayer(1)

    regressionLayer];

See Also

See Also
averagePooling2dLayer | classificationLayer | convolution2dLayer
| fullyConnectedLayer | imageInputLayer | maxPooling2dLayer |
regressionLayer | reluLayer | softmaxLayer | trainNetwork

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a
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MaxPooling2DLayer class

Max pooling layer

Description

Max pooling layer class containing the pool size, the stride size, padding, and the name
of the layer. A max pooling layer performs down-sampling by dividing the input into
rectangular pooling regions, and computing the maximum of each region. The size of the
pooling regions is determined by the poolSize argument to the maxPooling2dLayer
function.

Construction

maxpoollayer = maxPooling2dLayer(poolSize) returns a layer that performs max
pooling, which is dividing the input into rectangular regions and returning the maximum
of each region. poolSize specifies the dimensions of a pooling region.

maxpoollayer = maxPooling2dLayer(poolSize,Name,Value) returns the
max pooling layer, with additional options specified by one or more Name,Value pair
arguments.

For more details on the name-value pair arguments, see maxPooling2dLayer.

Input Arguments

poolSize — Height and width of pooling region
scalar value | vector of two scalar values

Height and width of a pooling region, specified as a scalar value or a vector of two scalar
values.

• If poolSize is a scalar, then the height and the width of the pooling region are the
same.

• If poolSize is a vector, then the vector must be of the form [h w], where h is the
height and w is the width.
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If the Stride dimensions are less than the respective pooling dimensions, then the
pooling regions overlap.

Note that the padding dimensions (Padding) must be less than the pooling region
dimensions (poolSize).

Example: [2 1]

Data Types: single | double

Properties

PoolSize — Height and width of pooling region
scalar | vector of two scalar values

Height and width of a pooling region, stored as a vector of two scalar values, [h w], where
h is the height and w is the width.
Data Types: double

Stride — Step size for traversing input
[1 1] (default) | vector of two scalar values

Step size for traversing the input vertically and horizontally, stored as a vector of two
scalar values, [v h], where v is the vertical stride and h is the horizontal stride.
Data Types: double

Padding — Size of the padding applied to the borders of the input
[0,0] (default) | vector of two scalar values

Size of the padding applied to the borders of the input vertically and horizontally, stored
as a vector of two scalar values, [a,b].

a is the padding applied to the top and the bottom and b is the padding applied to the left
and right of the input data.

Note that the padding dimensions (Padding) must be less than the pooling region
dimensions (poolSize).

Data Types: double

Name — Layer name
'' (default) | character vector
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Layer name, specified by a character vector. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

Examples

Max Pooling Layer with Non-Overlapping Pooling Regions

Create a maxpooling layer with non-overlapping pooling regions, which down-samples by
a factor of 2.

maxpoollayer = maxPooling2dLayer(2,'Stride',2);

maxpoollayer = 

  MaxPooling2DLayer with properties:

    PoolSize: [2 2]

      Stride: [2 2]

     Padding: [0 0]

        Name: ''

The height and width of the rectangular region (pool size) are both 2. This layer creates
pooling regions of size [2 2] and returns the maximum of the four elements in each
region. Because the step size for traversing the images vertically and horizontally (stride)
is also [2 2] the pooling regions do not overlap.

Max Pooling Layer with Overlapping Pooling Regions

Create a max pooling layer with overlapping pooling regions. Also add padding for the
top and bottom of the input.

maxpoollayer = maxPooling2dLayer([3 2],'Stride',2,...

   'Padding',[1 0],'Name','max1');
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maxpoollayer = 

  MaxPooling2DLayer with properties:

    PoolSize: [3 2]

      Stride: [2 2]

     Padding: [1 0]

        Name: 'max1'

The height and width of the rectangular region (pool size) are 3 and 2. This layer creates
pooling regions of size [3 2] and returns the maximum of the six elements in each region.
Because the step size for traversing the images vertically and horizontally (stride) is [2 2]
the pooling regions overlap.

1 in the value for the Padding name-value pair indicates that software also adds
padding to the top and bottom of the input data. 0 indicates that no padding is added to
the right and left of the input data.

You can display any of the properties by indexing into the object. Display the name of the
layer.

maxpoollayer.Name 

ans =

max1

See Also

See Also
averagePooling2dLayer | maxPooling2dLayer

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a

1-655



1 Functions — Alphabetical List

ReLULayer class

Rectified Linear Unit (ReLU) layer

Description

A rectified linear unit (ReLU) layer class that contains the name of the layer. A ReLU
layer performs a threshold operation, where any input value less than zero is set to zero,
i.e.
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Construction

layer = relu() returns a ReLU layer.

layer = reluLayer(Name,Value) returns a ReLU layer, with the additional option
specified by the Name,Value pair argument.

Properties

Name — Layer name
'' (default) | character vector

Layer name, specified by a character vector. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.
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Examples

Create ReLU Layer with Specified Name

Create a rectified linear unit layer with the name relu1.

layer = reluLayer('Name','relu1');

References

[1] Nair, V. and G. E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Proc. 27th International Conference on Machine Learning, 2010.

See Also

See Also
reluLayer

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a
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SoftmaxLayer class

Softmax layer for convolutional neural networks

Description
A softmax layer for convolutional neural networks, which uses the  softmax activation
function.

Construction
smlayer = softmaxLayer() returns a softmax layer for classification problems.

smlayer = softmaxLayer('Name',layername) returns a softmax layer, with the
additional option specified by the 'Name',layername name-value pair argument.

Properties
Name — Layer name
'' (default) | character vector

Layer name, specified by a character vector. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

Examples
Create a Softmax Layer with Specified Name

Create a softmax layer with the name sml1.
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smlayer = softmaxLayer('Name','sml1');

Definitions

Softmax Function

For a classification problem with more than 2 classes, the softmax function is
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= ( ) ( )( )ln x,qq , P crx ,qq( )  is the conditional probability of the sample

given class r, and P c
r( )  is the class prior probability.

The softmax function is also known as the normalized exponential and can be considered
as the multi-class generalization of the logistic sigmoid function [1].

References

[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY,
2006.

See Also

See Also
softmaxLayer

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a
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SeriesNetwork class

Series network class

Description

A series network class that contains the layers in the trained network. A series network
is a network with layers arranged one after another. There is a single input and a single
output.

Construction

trainedNet = trainNetwork(X,Y,layers,options) returns a trained network.
trainedNet is a SeriesNetwork object.

For more information on training a convolutional neural network, see trainNetwork.

Input Arguments

X — Images
4-D numeric array

Images, specified as a 4-D numeric array. The array is arranged so that the first three
dimensions are the height, width, and channels, and the last dimension indexes the
individual images.
Data Types: single | double

Y — Class labels
array of categorical responses

Class labels, specified as an array of categorical responses.
Data Types: categorical

layers — An array of network layers
Layer object
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An array of network layers, specified as a Layer object.

options — Training options
object

Training options, specified as an object returned by the trainingOptions function.

For the solver 'sgdm' (stochastic gradient descent with momentum), trainingOptions
returns a TrainingOptionsSGDM object.

Methods

activations Compute convolutional neural network
layer activations

classify Classify data using a trained convolutional
neural network

predict Predict responses using a trained
convolutional neural network

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

Examples

Construct and Train a Convolutional Neural Network for Classification

This example shows how to create a convolutional neural network for classification.

Load the sample data.

[XTrain,TTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a
28-by-28-by-1-by-5000 array, where 28 is the height and 28 is the width of the images.
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1 is the number of channels and 5000 is the number of synthetic images of handwritten
digits. TTrain is a categorical vector containing the labels for each observation.

Construct the convolutional neural network architecture.

layers = [...

    imageInputLayer([28 28 1])

    convolution2dLayer(5,20)

    reluLayer

    maxPooling2dLayer(2,'Stride',2)

    fullyConnectedLayer(10)

    softmaxLayer

    classificationLayer];

Set the options to default settings for the stochastic gradient descent with momentum.
Set 'Verbose' to false to suppress detailed output on the training progress.

options = trainingOptions('sgdm','Verbose',false);

Train the network.

net = trainNetwork(XTrain,TTrain,layers,options);

Run the trained network on a test set and predict the image labels (digits).

[XTest,TTest] = digitTest4DArrayData;

YTest = classify(net,XTest);

Calculate the accuracy.

accuracy = sum(YTest==TTest)/numel(TTest)

accuracy =

    0.9770

Construct and Train a Convolutional Neural Network for Regression

Load sample data.

[trainImages,~,trainAngles] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-
by-28-by-1-by-5000 array, where 28 is the height and 28 is the width of the images. 1
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is the number of channels and 5000 is the number of synthetic images of handwritten
digits. TTrain is a categorical vector containing the labels for each observation.

Construct the convolutional neural network architecture.

layers = [...

    imageInputLayer([28 28 1])

    convolution2dLayer(12,25)

    reluLayer

    fullyConnectedLayer(1)

    regressionLayer]

layers = 

  5x1 Layer array with layers:

     1   ''   Image Input         28x28x1 images with 'zerocenter' normalization

     2   ''   Convolution         25 12x12 convolutions with stride [1  1] and padding [0  0]

     3   ''   ReLU                ReLU

     4   ''   Fully Connected     1 fully connected layer

     5   ''   Regression Output   mean-squared-error

Set training options. Specify the solver to "Stochastic gradient descent with momentum",
and the initial learn rate to 0.001.

options = trainingOptions('sgdm','InitialLearnRate',.001);

Train the network.

net = trainNetwork(trainImages,trainAngles,layers,options)

Training on single GPU.

Initializing image normalization.

|=========================================================================================|

|     Epoch    |   Iteration  | Time Elapsed |  Mini-batch  |  Mini-batch  | Base Learning|

|              |              |  (seconds)   |     Loss     |     RMSE     |     Rate     |

|=========================================================================================|

|            1 |            1 |         0.08 |     351.3609 |        26.51 |       0.0010 |

|            2 |           50 |         4.18 |     117.3655 |        15.32 |       0.0010 |

|            3 |          100 |         8.24 |      55.0872 |        10.50 |       0.0010 |

|            4 |          150 |        12.25 |      57.7389 |        10.75 |       0.0010 |

|            6 |          200 |        16.34 |      41.2819 |         9.09 |       0.0010 |

|            7 |          250 |        20.40 |      35.3071 |         8.40 |       0.0010 |
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|            8 |          300 |        24.44 |      33.7413 |         8.21 |       0.0010 |

|            9 |          350 |        28.48 |      30.2453 |         7.78 |       0.0010 |

|           11 |          400 |        32.54 |      30.9003 |         7.86 |       0.0010 |

|           12 |          450 |        36.56 |      26.3620 |         7.26 |       0.0010 |

|           13 |          500 |        40.60 |      18.0586 |         6.01 |       0.0010 |

|           15 |          550 |        44.61 |      22.5642 |         6.72 |       0.0010 |

|           16 |          600 |        48.67 |      18.3832 |         6.06 |       0.0010 |

|           17 |          650 |        52.72 |      17.1514 |         5.86 |       0.0010 |

|           18 |          700 |        56.80 |      18.7614 |         6.13 |       0.0010 |

|           20 |          750 |        60.90 |      18.8418 |         6.14 |       0.0010 |

|           21 |          800 |        64.95 |      19.0134 |         6.17 |       0.0010 |

|           22 |          850 |        69.00 |      13.2792 |         5.15 |       0.0010 |

|           24 |          900 |        73.08 |      13.5988 |         5.22 |       0.0010 |

|           25 |          950 |        77.10 |      11.4873 |         4.79 |       0.0010 |

|           26 |         1000 |        81.20 |      15.5789 |         5.58 |       0.0010 |

|           27 |         1050 |        85.25 |      11.2764 |         4.75 |       0.0010 |

|           29 |         1100 |        89.25 |      12.1369 |         4.93 |       0.0010 |

|           30 |         1150 |        93.38 |      10.2268 |         4.52 |       0.0010 |

|           30 |         1170 |        95.02 |       9.1796 |         4.28 |       0.0010 |

|=========================================================================================|

net = 

  SeriesNetwork with properties:

    Layers: [5×1 nnet.cnn.layer.Layer]

Run the trained network on a test set and predict the digit angles of rotation.

[testImages,~,testAngles] = digitTest4DArrayData;

predictedTestAngles = predict(net,testImages);

Calculate the root-mean-square error (RMSE).

predictionError = testAngles - predictedTestAngles;

squares = predictionError.^2;

rmse = sqrt(mean(squares))

rmse =

  single

    6.1924
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Tips

• A convolutional neural network model saved with R2016a can only be loaded with a
GPU, because in R2016a, the learnable parameters are stored as gpuArrays. Once
you load the model, you can resave it in R2016b. This saves the learnable parameters
as MATLAB arrays. You can then change the execution environment to CPU while
running the network.

See Also

See Also
trainingOptions | trainNetwork

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a
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TrainingOptionsSGDM class

Training options for stochastic gradient descent with momentum

Description

Class that is comprising training options such as learning rate information, L2
regularization factor, and mini-batch size for stochastic gradient descent with
momentum.

Construction

options = trainingOptions(solverName) returns a set of training options for the
solver specified by solverName.

options = trainingOptions(solverName,Name,Value) returns a set of training
options, with additional options specified by one or more Name,Value pair arguments.

For more options on the name-value pair arguments, see trainingOptions.

Input Arguments

solverName — Solver to use for training the network
'sgdm'

Solver to use for training the network. You must specify 'sgdm' (stochastic gradient
descent with momentum).

Properties

Momentum — Contribution of the previous gradient step
a scalar value from 0 to 1

Contribution of the gradient step from the previous iteration to the current iteration of
the training. A value of 0 means no contribution, 1 means maximal contribution.
Data Types: double
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InitialLearnRate — Initial learning rate
a scalar value

Initial learning rate used for training, stored as a scalar value. If the learning rate is
too low, the training takes a long time, but if it is too high the training might reach a
suboptimal result.
Data Types: double

LearnRateScheduleSettings — Settings for learning rate schedule, specified by the user
structure

Settings for learning rate schedule, specified by the user, stored as a structure.
LearnRateScheduleSettings always has the following field:

• Method — Name of the method for adjusting the learning rate. Possible names are:

• 'fixed' — the software does not alter the learning rate during training.
• 'piecewise' — the learning rate drops periodically during training.

If Method is 'piecewise', then LearnRateScheduleSettings contains two more
fields:

• DropRateFactor — The multiplicative factor by which to drop the learning rate
during training.

• DropPeriod — The number of epochs that should pass between adjustments to the
learning rate during training.

Data Types: struct

L2Regularization — Factor for L2 regularizer
scalar value

Factor for L2 regularizer, stored as a scalar value. Each set of parameters in a layer can
specify a multiplier for the L2 regularizer.
Data Types: double

MaxEpochs — Maximum number of epochs
an integer value

Maximum number of epochs to use for training, stored as an integer value.
Data Types: double
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MiniBatchSize — Size of the mini-batch
an integer value

Size of the mini-batch to use for each training iteration, stored as an integer value.
Data Types: double

Verbose — Indicator to display the information on the training progress
1 (default) | 0

Indicator to display the information on the training progress on the command window,
stored as either 1 (true) or 0 (false).

The displayed information includes the number of epochs, number of iterations, time
elapsed, mini batch accuracy, and base learning rate.
Data Types: logical

CheckpointPath — Path where checkpoint networks are saved
character vector

Path where checkpoint networks are saved, stored as a character vector.
Data Types: char

ExecutionEnvironment — Hardware to use for training the network
character vector

Hardware to use for training the network, stored as a character vector.
Data Types: char

WorkerLoad — Relative division of load between parallel workers on different hardware
numeric vector

Relative division of load between parallel workers on different hardware, stored as a
numeric vector.
Data Types: double

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.
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Examples

Specify Training Options

Create a set of options for training with stochastic gradient descent with momentum. The
learning rate will be reduced by a factor of 0.2 every 5 epochs. The training will last for
20 epochs, and each iteration will use a mini-batch with 300 observations.

options = trainingOptions('sgdm',...

      'LearnRateSchedule','piecewise',...

      'LearnRateDropFactor',0.2,... 

      'LearnRateDropPeriod',5,... 

      'MaxEpochs',20,... 

      'MiniBatchSize',300);

Definitions

Stochastic Gradient Descent with Momentum

The gradient descent algorithm updates the parameters (weights and biases) so as
to minimize the error function by taking small steps in the direction of the negative
gradient of the loss function, — ( )E qq  [1]:

qq qq qq
l l l+ = - — ( )1 a E ,

where l  stands for the iteration number, a > 0  is the learning rate, qq  is the parameter
vector, and E qq( )  is the loss function. The gradient of the loss function, — ( )E qq , is
evaluated using the entire training set, and the standard gradient descent algorithm
uses the entire data set at once. The stochastic gradient descent algorithm evaluates the
gradient, hence updates the parameters, using a subset of the training set. This subset is
called a mini batch.

Each evaluation of the gradient using the mini batch is an iteration. At each iteration,
the algorithm takes one step towards minimizing the loss function. The full pass of
the training algorithm over the entire training set using mini batches is an epoch.
You can specify the mini batch size and the maximum number of epochs using the
MiniBatchSize and MaxEpochs name-value pair arguments, respectively.
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The gradient descent algorithm might oscillate along the steepest descent path to the
optimum. Adding a momentum term to the parameter update is one way to prevent this
oscillation[2]. The SGD update with momentum is

qq qq qq qq qq
l l l l l+ -= - — ( ) + -( )1 1a gE ,

where g  determines the contribution of the previous gradient step to the current
iteration. You can specify this value using the Momentum name-value pair argument.

References

[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY,
2006.

[2] Murphy, K. P. Machine Learning: A Probabilistic Perspective. The MIT Press,
Cambridge, Massachusetts, 2012.

See Also

See Also
trainingOptions

Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a
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averagePooling2dLayer
Create an average pooling layer

Syntax

avgpoollayer = averagePooling2dLayer(poolSize)

avgpoollayer = averagePooling2dLayer(poolSize,Name,Value)

Description

avgpoollayer = averagePooling2dLayer(poolSize) returns a layer that
performs average pooling, dividing the input into rectangular regions and computing the
average of each region. poolSize specifies the dimensions of the rectangular region.

avgpoollayer = averagePooling2dLayer(poolSize,Name,Value) returns the
average pooling layer, with additional options specified by one or more Name,Value pair
arguments.

Examples

Average Pooling Layer with Non-Overlapping Pooling Regions

Create an average pooling layer with non-overlapping pooling regions, which down-
samples by a factor of 2.

avgpoollayer = averagePooling2dLayer(2,'Stride',2);

The height and width of the rectangular region (pool size) are both 2. This layer creates
pooling regions of size [2,2] and takes the average of the four elements in each region.
Because the stride (step size for moving along the images vertically and horizontally) is
also [2,2] the pooling regions do not overlap.

Average Pooling Layer with Overlapping Pooling Regions

Create an average pooling layer with overlapping pooling regions. Also add padding for
the top and bottom of the input.
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avgpoollayer = averagePooling2dLayer([3,2],'Stride',2,'Padding',[1 0]);

The height and width of the rectangular region (pool size) are 3 and 2. This layer creates
pooling regions of size [3,2] and takes the average of the six elements in each region.
Because the stride is [2,2], the pooling regions overlap.

A value of 1 for the Padding name-value pair indicates that software also adds a row of
zeros to the top and bottom of the input data. 0 indicates that no padding is added to the
right and left of the input data.

Input Arguments

poolSize — Height and width of pooling region
scalar value | vector of two scalar values

Height and width of a pooling region, specified as a scalar value or a vector of two scalar
values.

• If poolSize is a scalar, then the height and the width of the pooling region are the
same.

• If poolSize is a vector, then the vector must be of the form [h w], where h is the
height and w is the width.

If the Stride dimensions are less than the respective pooling dimensions, then the
pooling regions overlap.

Note that the padding dimensions (Padding) must be less than the pooling region
dimensions (poolSize).

Example: [2 1]

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-672



 averagePooling2dLayer

Example: 'Stride',[3,2],'Padding',[2,1],'Name','avgpool1' specifies that
the software takes steps of size 3 vertically and steps of size 2 horizontally as it traverses
through the input. It also adds two rows of zeros to the top and bottom, and a column of
zeros to the left and right of the input, and states the name of the layer as 'avgpool1'.

'Stride' — Step size for traversing the input
[1,1] (default) | scalar value | vector of two scalar values

Step size for traversing the input vertically and horizontally, specified as the comma-
separated pair consisting of Stride and a scalar value or a vector of two scalar values.

• If Stride is a scalar value, then the software uses the same value for both
dimensions.

• If Stride is a vector, then it must be of the form [u,v], where u is the vertical stride
and v is the horizontal stride.

Example: For 'Stride',[2,3], the software first moves to the third observation
horizontally as it moves through the input. Once it covers the input horizontally, it
moves to the second observation vertically and again covers the input horizontally with
horizontal strides of 3. It repeats this process until it moves through the whole input.
Data Types: single | double

'Padding' — Size of zero padding to apply to input borders
[0,0] (default) | scalar value | vector of two scalar values

Size of zero padding to apply to input borders vertically and horizontally, specified as the
comma-separated pair consisting of Padding and a scalar value or a vector of two scalar
values.

• If Padding is a scalar value, then the software uses the same value for both
dimensions.

• If Padding is a vector, then it must be of the form [a,b], where a is the padding to be
applied to the top and the bottom of the input data and b is the padding to be applied
to the left and right.

Note that the padding dimensions (Padding) must be less than the pooling region
dimensions (poolSize).

Example: To add one row of zeros to the top and bottom, and one column of zeros to the
left and right of the input data, specify 'Padding',[1,1].

Data Types: single | double

1-673



1 Functions — Alphabetical List

'Name' — Name for the layer
'' (default) | character vector

Name for the layer, specified as the comma-separated pair consisting of Name and a
character vector.

If name of the layer is set to '', then the software automatically assigns a name at
training time.
Example: 'Name','avgpool1'

Data Types: char

Output Arguments

avgpoollayer — Average pooling layer
AveragePooling2DLayer object

Average pooling layer, returned as an AveragePooling2DLayer object.

For information on concatenating layers to construct convolutional neural network
architecture, see Layer.

Definitions

Average-pooling Layer

Average-pooling layer outputs the average values of rectangular regions of its input.
The size of the rectangular regions is determined by the poolSize. For example, if
poolSize is [2,3], the software returns the average value of regions of height 2 and
width 3. The software scans through the input horizontally and vertically in step sizes
you can specify using Stride. If the poolSize is smaller than or equal to Stride, then
the pooling regions do not overlap.

Similar to the max-pooling layer, the average-pooling layer does not perform any
learning. It performs a down-sampling operation. For nonoverlapping regions (poolSize
and Stride are equal), if the input to the average-pooling layer is n-by-n, and the
pooling region size is h-by-h, then the average-pooling layer down-samples the regions
by h in both directions. That is, output of the average-pooling layer for one channel of a
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convolutional layer is n/h-by-n/h. For overlapping regions, the output of a pooling layer is
(Input Size – Pool Size + 2*Padding)/Stride + 1.

See Also

See Also
AveragePooling2DLayer | convolution2dLayer | maxPooling2dLayer

Introduced in R2016a
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classificationLayer
Create a classification output layer

Syntax

coutputlayer = classificationLayer()

coutputlayer = classificationLayer('Name',Name)

Description

coutputlayer = classificationLayer() returns a classification output layer for a
neural network. The classification output layer holds the name of the loss function that
the software uses for training the network for multi-class classification, the size of the
output, and the class labels.

coutputlayer = classificationLayer('Name',Name) returns a classification
layer with name specified by name.

Examples

Create Classification Output Layer

Create a classification output layer with the name 'coutput'.

coutputlayer = classificationLayer('Name','coutput')

coutputlayer = 

  ClassificationOutputLayer with properties:

            Name: 'coutput'

      ClassNames: {1×0 cell}

      OutputSize: 'auto'

   Hyperparameters

    LossFunction: 'crossentropyex'
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The default loss function for classification is cross entropy for  mutually exclusive
classes.

Input Arguments

Name — Name for the layer
'' (default) | character vector

Name for the layer, specified as the comma-separated pair consisting of Name and a
character vector.
Example: 'Name','coutput'

Data Types: char

Output Arguments

coutputlayer — Classification output layer
ClassificationOutputLayer

Classification output layer, returned as a ClassificationOutputLayer object.

For information on concatenating layers to construct convolutional neural network
architecture, see Layer.

Definitions

Cross Entropy Function for k Mutually Exclusive Classes

For multi-class classification problems the software assigns each input to one of the k
mutually exclusive classes. The loss (error) function for this case is the cross entropy
function for a 1-of-k coding scheme [1]:

E t yij j i

j

k

i

n

qq qq( ) = - ( )
==

ÂÂ ln , ,x

11
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where qq  is the parameter vector, tij  is the indicator that the ith sample belongs to

the jth class, and y j ix ,qq( )  is the output for sample i. The output y j ix ,qq( )  can be
interpreted as the probability that the network associates ith input with class j, i.e.,

P t j i=( )1 x .

The output unit activation function is the softmax function:
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References

[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY,
2006.

See Also

See Also
ClassificationOutputLayer | regressionLayer | RegressionOutputLayer |
softmaxLayer

Introduced in R2016a
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convolution2dLayer

Create 2-D convolutional layer

Syntax

convlayer = convolution2dLayer(filterSize,numFilters)

convlayer = convolution2dLayer(filterSize,numFilters,Name,Value)

Description

convlayer = convolution2dLayer(filterSize,numFilters) returns a layer for
2-D convolution.

convlayer = convolution2dLayer(filterSize,numFilters,Name,Value)

returns the convolutional layer, with additional options specified by one or more
Name,Value pair arguments.

Examples

Create Convolutional Layer

Create a convolutional layer with 96 filters, each with a height and width of 11. Use a
stride (step size) of 4 in the horizontal and vertical directions.

convlayer = convolution2dLayer(11,96,'Stride',4);

Specify Initial Weight and Biases in Convolutional Layer

Create a convolutional layer with 32 filters, each with a height and width of 5. Pad the
input image with 2 pixels along its border. Set the learning rate factor for the bias to 2.
Manually initialize the weights from a Gaussian distribution with a standard deviation
of 0.0001.

layer = convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
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Suppose the input has color images. Manually initialize the weights from a Gaussian
distribution with standard deviation of 0.0001.

layer.Weights = randn([5 5 3 32])*0.0001;

The size of the local regions in the layer is 5-by-5. The number of color channels for each
region is 3. The number of feature maps is 32 (the number of filters). Therefore, there are
5*5*3*32 weights in the layer.

randn([5 5 3 32]) returns a 5-by-5-by-3-by-32 array of values from a Gaussian
distribution with a mean of 0 and a standard deviation of 1. Multiplying the values by
0.0001 sets the standard deviation of the Gaussian distribution equal to 0.0001.

Similarly, initialize the biases from a Gaussian distribution with a mean of 1 and a
standard deviation of 0.00001.

layer.Bias = randn([1 1 32])*0.00001+1;

There are 32 feature maps, and therefore 32 biases. randn([1 1 32]) returns a 1-
by-1-by-32 array of values from a Gaussian distribution with a mean of 0 and a standard
deviation of 1. Multiplying the values by 0.00001 sets the standard deviation of values
equal to 0.00001, and adding 1 sets the mean of the Gaussian distribution equal to 1.

Convolution That Fully Covers the Input Image

Suppose the size of the input image is 28-by-28-1. Create a convolutional layer with 16
filters that have a height of 6 and a width of 4, that traverses the image with a stride of 4
both horizontally and vertically. Make sure the convolution covers the images completely.

For the convolution to fully cover the input image, both the horizontal and vertical output
dimensions must be integer numbers. For the horizontal output dimension to be an
integer, one row zero padding is required on the top and bottom of the image: (28 – 6+
2*1)/4 + 1 = 7. For the vertical output dimension to be an integer, no zero padding is
required: (28 – 4+ 2*0)/4 + 1 = 7. Construct the convolutional layer as follows:

convlayer = convolution2dLayer([6 4],16,'Stride',4,'Padding',[1 0]);

Input Arguments

filterSize — Height and width of filters
integer value | vector of two integer values
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Height and width of the filters, specified as an integer value or a vector of two integer
values. filterSize defines the size of the local regions to which the neurons connect in
the input.

• If filterSize is a scalar value, then the filters have the same height and width.
• If filterSize is a vector, then it must be of the form [h w], where h is the height

and w is the width.

Example: [5,5]

Data Types: single | double

numFilters — Number of filters
integer value

Number of filters, specified as an integer value. numFilters represents the number
of neurons in the convolutional layer that connect to the same region in the input.
This parameter determines the number of channels (feature maps) in the output of the
convolutional layer.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'WeightInitializer',0.05,'WeightLearnRateFactor',1.5,'Name','conv1'

specifies the initial value of weights as 0.05, the learning rate for this layer as 1.5 times
the global learning rate, and the name of the layer as conv1.

'Stride' — Step size for traversing the input
[1,1] (default) | scalar value | vector of two scalar values

Step size for traversing the input vertically and horizontally, specified as the comma-
separated pair consisting of Stride and a scalar value or a vector of two scalar values.

• If Stride is a scalar value, then the software uses the same value for both
dimensions.
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• If Stride is a vector, then it must be of the form [u,v], where u is the vertical stride
and v is the horizontal stride.

Example: For 'Stride',[2,3], the software first moves to the third observation
horizontally as it moves through the input. Once it covers the input horizontally, it
moves to the second observation vertically and again covers the input horizontally with
horizontal strides of 3. It repeats this process until it moves through the whole input.
Data Types: single | double

'Padding' — Size of zero padding to apply to input borders
[0,0] (default) | scalar value | vector of two scalar values

Size of zero padding to apply to input borders vertically and horizontally, specified as the
comma-separated pair consisting of Padding and a scalar value or a vector of two scalar
values.

• If Padding is a scalar value, then the software uses the same value for both
dimensions.

• If Padding is a vector, then it must be of the form [a,b], where a is the padding to be
applied to the top and the bottom of the input data and b is the padding to be applied
to the left and right.

Note that the padding dimensions (Padding) must be less than the pooling region
dimensions (poolSize).

Example: To add one row of zeros to the top and bottom, and one column of zeros to the
left and right of the input data, specify 'Padding',[1,1].

Data Types: single | double

'NumChannels' — Number of channels for each filter
'auto' (default) | integer value

Number of channels (also referred to as feature maps) for each filter, specified as the
comma-separated pair consisting of NumChannels and 'auto' or an integer value.

This parameter is always equal to the channels of the input to this convolutional layer.
For example, if the input is a color image, then the number of channels for the input is
3. If the number of filters for the convolutional layer prior to the current layer is 16, then
the number of channels for this layer is 16.

If 'NumChannels' is auto, then the software infers the correct value for the number of
channels during training time.
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Example: 'NumChannels',256

Data Types: single | double | char

'WeightLearnRateFactor' — Multiplier for learning rate of weights
1 (default) | scalar value

Multiplier for the learning rate of the weights, specified as the comma-separated pair
consisting of WeightLearnRateFactor and a scalar value.

trainNetwork multiplies this factor with the global learning rate to determine the
learning rate for the weights in this layer. It determines the global learning rate based on
the settings specified using trainingOptions.

Example: 'WeightLearnRateFactor',2 specifies that the learning rate for the weights
in this layer is twice the global learning rate.
Data Types: single | double

'BiasLearnRateFactor' — Multiplier for learning rate of bias
1 (default) | scalar value

Multiplier for the learning rate of the bias, specified as the comma-separated pair
consisting of BiasLearnRateFactor and a scalar value.

The software multiplies this factor with the global learning rate to determine the
learning rate for the bias in this layer.

The software determines the global learning rate based on the settings specified using
the trainingOptions function.

Example: 'BiasLearnRateFactor',2 specifies that the learning rate for the bias in
this layer is twice the global learning rate.
Data Types: single | double

'WeightL2Factor' — L2 regularization factor for weights
1 (default) | scalar value

L2 regularization factor for the weights, specified as the comma-separated pair consisting
of WeightL2Factor and a scalar value.

The software multiplies this factor with the global L2 regularization factor to determine
the learning rate for the weights in this layer.
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You can specify the global L2 regularization factor using the trainingOptions
function.
Example: 'WeightL2Factor',2 specifies that the L2 regularization for the weights in
this layer is twice the global L2 regularization factor.
Data Types: single | double

'BiasL2Factor' — Multiplier for L2 weight regularizer for biases
1 (default) | scalar value

Multiplier for the L2 weight regularizer for the biases, specified as the comma-separated
pair consisting of BiasL2Factor and a scalar value.

You can specify the global L2 regularization factor using the trainingOptions
function.
Example: 'BiasL2Factor',2 specifies that the L2 regularization for the bias in this
layer is twice the global L2 regularization factor.
Data Types: single | double

'Name' — Name for the layer
'' (default) | character vector

Name for the layer, specified as the comma-separated pair consisting of Name and a
character vector.
Example: 'Name','conv2'

Data Types: char

Output Arguments

convlayer — 2-D convolutional layer
Convolution2DLayer object

2-D convolutional layer for convolutional neural networks, returned as a
Convolution2DLayer object.

For information on concatenating layers to construct convolutional neural network
architecture, see Layer.
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Definitions

Convolutional Layer

A convolutional layer consists of neurons that connect to small regions of the input or the
layer before it. These regions are called filters. You can specify the size of these regions
using the filterSize input argument.

For each region, the software computes a dot product of the weights and the input, and
then adds a bias term. The filter then moves along the input vertically and horizontally,
repeating the same computation for each region, i.e., convolving the input. The step size
with which it moves is called a stride. You can specify this step size with the Stride
name-value pair argument. These local regions that the neurons connect to might overlap
depending on the filterSize and Stride.

The number of weights used for a filter is h*w*c, where h is the height, and w is the
width of the filter size, and c is the number of channels in the input (for example, if the
input is a color image, the number of channels is three). As a filter moves along the input,
it uses the same set of weights and bias for the convolution, forming a feature map. The
convolution layer usually has multiple feature maps, each with a different set of weights
and a bias. The number of feature maps is determined by the number of filters.

The total number of parameters in a convolutional layer is ((h*w*c + 1)*Number of
Filters), where 1 is for the bias.

The output height and width of the convolutional layer is (Input Size – Filter Size +
2*Padding)/Stride + 1. This value must be an integer for the whole image to be fully
covered. If the combination of these parameters does not lead the image to be fully
covered, the software by default ignores the remaining part of the image along the right
and bottom edge in the convolution.

The total number of neurons in a feature map, say Map Size, is the product of the output
height and width. The total number of neurons (output size) in a convolutional layer,
then, is Map Size*Number of Filters.

For example, suppose that the input image is a 28-by-28-by-3 color image. For a
convolutional layer with 16 filters, and a filter size of 8-by-8, the number of weights
per filter is 8*8*3 = 192, and the total number of parameters in the layer is (192+1) *
16 = 3088. Assuming stride is 4 in each direction, the total number of neurons in each
feature map is 6-by-6 ((28 – 8+0)/4 + 1 = 6). Then, the total number of neurons in the
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layer is 6*6*16 = 256. Usually, the results from these neurons pass through some form of
nonlinearity, such as rectified linear units (ReLU).

Algorithms

The default for the initial weights is a Gaussian distribution with mean 0 and standard
deviation 0.01. The default for the initial bias is 0. You can manually change the
initialization for the weights and bias. See “Specify Initial Weight and Biases in
Convolutional Layer” on page 1-679.

References

[1] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D., et al. ''Handwritten Digit Recognition with a Back-propagation
Network.'' In Advances of Neural Information Processing Systems, 1990.

[2] LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. ''Gradient-based Learning Applied to
Document Recognition.'' Proceedings of the IEEE. Vol 86, pp. 2278–2324, 1998.

[3] Murphy, K. P. Machine Learning: A Probabilistic Perspective. Cambridge,
Massachusetts: The MIT Press, 2012.

See Also

See Also
averagePooling2dLayer | Convolution2DLayer | maxPooling2dLayer |
reluLayer

Introduced in R2016a
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crossChannelNormalizationLayer
Create a local response normalization layer

Syntax
localnormlayer = crossChannelNormalizationLayer(windowChannelSize)

localnormlayer = crossChannelNormalizationLayer(windowChannelSize,

Name,Value)

Description
localnormlayer = crossChannelNormalizationLayer(windowChannelSize)

returns a local response normalization layer, which carries out channel-wise
normalization [1].

localnormlayer = crossChannelNormalizationLayer(windowChannelSize,

Name,Value) returns a local response normalization layer, with additional options
specified by one or more Name,Value pair arguments.

Examples
Create Local Response Normalization Layer

Create a local response normalization layer for channel-wise normalization, where
a window of five channels will be used to normalize each element, and the additive
constant for the normalizer (K) is 1.

localnormlayer = crossChannelNormalizationLayer(5,'K',1);

Input Arguments
windowChannelSize — The size of the channel window
positive integer

The size of the channel window, which controls the number of channels that are used for
the normalization of each element, specified as a positive integer.
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For example, if this value is 3, the software normalizes each element by its neighbors in
the previous channel and the next channel.

If windowChannelSize is even, then the window is asymmetric. That is, the software
looks at the previous floor((w-1)/2) channels, and the following floor(w/2)
channels. For example, if windowChannelSize is 4, the software normalizes each
element by its neighbor in the previous channel, and by its neighbors in the next two
channels.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.0002,'Name','localresponsenorm1' specifies the α
hyperparameter as 0.0002, and the name of the layer as localresponsenorm1.

'Alpha' — α hyperparameter in the normalization
0.0001 (default) | scalar value

α hyperparameter in the normalization, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value.

Example: 'Alpha',0.0002

Data Types: single | double

'Beta' — β hyperparameter in the normalization
0.75 (default) | scalar value

β hyperparameter in the normalization, specified as the comma-separated pair consisting
of 'Beta' and a scalar value.

Example: 'Beta',0.80

Data Types: single | double

'K' — K hyperparameter in the normalization
2 (default) | scalar value
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K hyperparameter in the normalization, specified as the comma-separated pair
consisting of 'K' and a scalar value.

Example: 'K',2.5

Data Types: single | double

'Name' — Name for the layer
'' (default) | character vector

Name for the layer, specified as the comma-separated pair consisting of Name and a
character vector.
Example: 'Name','crosschnorm'

Data Types: char

Output Arguments

localnormlayer — Cross channel normalization layer
CrossChannelNormalizationLayer object

Cross channel normalization layer, returned as a CrossChannelNormalizationLayer
object.

For information on concatenating layers to construct convolutional neural network
architecture, see Layer.

Definitions

Local Response Normalization

For each element 
x

 in the input, the software computes a normalized value 
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where K, α, and β  are the hyperparameters, and ss is the sum of squares of the elements
in the normalization window. This formula is slightly different than what is presented
in [1]. You can obtain the equivalent formula by multiplying the alpha value by the
windowChannelSize.

References

[1] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep
Convolutional Neural Networks. " Advances in Neural Information Processing
Systems. Vol 25, 2012.

See Also

See Also
averagePooling2dLayer | convolution2dLayer |
CrossChannelNormalizationLayer | maxPooling2dLayer

Introduced in R2016a
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dropoutLayer
Create a dropout layer

Syntax

droplayer = dropoutLayer()

droplayer = dropoutLayer(probability)

droplayer = dropoutLayer( ___ ,Name,Value)

Description

droplayer = dropoutLayer() returns a dropout layer, which randomly sets input
elements to zero with a probability of 0.5. Dropout layer only works at training time.

droplayer = dropoutLayer(probability) returns a dropout layer, which randomly
sets input elements to zero with a probability specified by probability.

droplayer = dropoutLayer( ___ ,Name,Value) returns the dropout layer, with the
additional option specified by the Name,Value pair argument.

Examples

Create a Dropout Layer

Create a dropout layer, which randomly sets about 40% of the input to zero. Assign the
name of the layer as dropout1.

droplayer = dropoutLayer(0.4,'Name','dropout1');

Input Arguments

probability — Probability for dropping out input elements
0.5 (default) | a scalar value in the range 0 to 1
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Probability for dropping out input elements (neurons) during training time, specified as a
scalar value in the range from 0 to 1.

A higher number will result in more neurons being dropped during training.
Example: dropoutLayer(0.4)

Name-Value Pair Arguments

Specify optional comma-separated pair of Name,Value argument. Name is the argument
name and Value is the corresponding value. Name must appear inside single quotes ('
').

Example: 'Name','dropL' specifies the name of the dropout layer as dropL.

'Name' — Name for the layer
'' (default) | character vector

Name for the layer, specified as the comma-separated pair consisting of Name and a
character vector.
Data Types: char

Output Arguments

droplayer — Dropout layer
DropoutLayer object

Dropout layer, returned as a DropoutLayer object.

For information on concatenating layers to construct convolutional neural network
architecture, see Layer.

Definitions

Dropout Layer

A dropout layer randomly sets the layer’s input elements to zero with a given probability.
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This corresponds to temporarily dropping a randomly chosen unit and all of its
connections from the network during training. So, for each new input element, the
software randomly selects a subset of neurons, forming a different layer architecture.
These architectures use common weights, but because the learning does not depend on
specific neurons and connections, the dropout layer might help prevent overfitting [1],
[2].

References

[1] Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. "Dropout: A
Simple Way to Prevent Neural Networks from Overfitting." Journal of Machine
Learning Research. Vol. 15, pp. 1929-1958, 2014.

[2] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep
Convolutional Neural Networks. " Advances in Neural Information Processing
Systems. Vol 25, 2012.

See Also

See Also
DropoutLayer | imageInputLayer | reluLayer

Introduced in R2016a
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fitnet

Function fitting neural network

Syntax

net = fitnet(hiddenSizes)

net = fitnet(hiddenSizes,trainFcn)

Description

net = fitnet(hiddenSizes) returns a function fitting neural network with a hidden
layer size of hiddenSizes.

net = fitnet(hiddenSizes,trainFcn) returns a function fitting neural network
with a hidden layer size of hiddenSizes and training function, specified by trainFcn.

Examples

Construct and Train a Function Fitting Network

Load the training data.

[x,t] = simplefit_dataset;

The 1-by-94 matrix x contains the input values and the 1-by-94 matrix t contains the
associated target output values.

Construct a function fitting neural network with one hidden layer of size 10.

net = fitnet(10);

View the network.

view(net)
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The sizes of the input and output are zero. The software adjusts the sizes of these during
training according to the training data.

Train the network net using the training data.

net = train(net,x,t);

View the trained network.

view(net)

You can see that the sizes of the input and output are 1.

Estimate the targets using the trained network.

y = net(x);

Assess the performance of the trained network. The default performance function is
mean squared error.

perf = perform(net,y,t)
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perf =

   1.4639e-04

The default training algorithm for a function fitting network is Levenberg-Marquardt
( 'trainlm' ). Use the Bayesian regularization training algorithm and compare the
performance results.

net = fitnet(10,'trainbr');

net = train(net,x,t);

y = net(x);

perf = perform(net,y,t)

perf =

   3.3362e-10

The Bayesian regularization training algorithm improves the performance of the network
in terms of estimating the target values.

Input Arguments
hiddenSizes — Size of the hidden layers
10 (default) | row vector

Size of the hidden layers in the network, specified as a row vector. The length of the
vector determines the number of hidden layers in the network.
Example: For example, you can specify a network with 3 hidden layers, where the first
hidden layer size is 10, the second is 8, and the third is 5 as follows: [10,8,5]

The input and output sizes are set to zero. The software adjusts the sizes of these during
training according to the training data.
Data Types: single | double

trainFcn — Training function name
'trainlm' (default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainscg' | ...

Training function name, specified as one of the following.
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Training Function Algorithm

'trainlm' Levenberg-Marquardt
'trainbr' Bayesian Regularization
'trainbfg' BFGS Quasi-Newton
'trainrp' Resilient Backpropagation
'trainscg' Scaled Conjugate Gradient
'traincgb' Conjugate Gradient with Powell/Beale

Restarts
'traincgf' Fletcher-Powell Conjugate Gradient
'traincgp' Polak-Ribiére Conjugate Gradient
'trainoss' One Step Secant
'traingdx' Variable Learning Rate Gradient Descent
'traingdm' Gradient Descent with Momentum
'traingd' Gradient Descent

Example: For example, you can specify the variable learning rate gradient descent
algorithm as the training algorithm as follows: 'traingdx'

For more information on the training functions, see “Train and Apply Multilayer Neural
Networks” and “Choose a Multilayer Neural Network Training Function”.
Data Types: char

Output Arguments

net — Function fitting network
network object

Function fitting network, returned as a network object.

Tips
• Function fitting is the process of training a neural network on a set of inputs in order

to produce an associated set of target outputs. After you construct the network with
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the desired hidden layers and the training algorithm, you must train it using a set
of training data. Once the neural network has fit the data, it forms a generalization
of the input-output relationship. You can then use the trained network to generate
outputs for inputs it was not trained on.

See Also

See Also
feedforwardnet | network | nftool  | perform | train | trainlm

Topics
“Fit Data with a Neural Network”
“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced in R2010b
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fullyConnectedLayer
Create fully connected layer

Syntax
fullconnectlayer = fullyConnectedLayer(outputSize)

fullconnectlayer = fullyConnectedLayer(outputSize,Name,Value)

Description
fullconnectlayer = fullyConnectedLayer(outputSize) returns a fully
connected layer, in which the software multiplies the input by a weight matrix and then
adds a bias vector.

fullconnectlayer = fullyConnectedLayer(outputSize,Name,Value) returns
a fully connected layer with additional options specified by one or more Name,Value pair
arguments.

Examples
Create Fully Connected Layer

Create a fully connected layer with an output size of 10.

fullconnectlayer = fullyConnectedLayer(10);

The software determines the input size at training time.

Specify Initial Weight and Biases in Fully Connected Layer

Create a fully connected layer with an output size of 10. Set the learning rate factor
for the bias to 2. Manually initialize the weights from a Gaussian distribution with a
standard deviation of 0.0001.

layers = [imageInputLayer([28 28 1],'Normalization','none');

          convolution2dLayer(5,20,'NumChannels',1);

          reluLayer();

          maxPooling2dLayer(2,'Stride',2);

          fullyConnectedLayer(10);
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          softmaxLayer();

          classificationLayer()];

To initialize the weights of the fully connected layer, you must know the layer’s input
size. The input size is equal to the output size of the preceding max pooling layer, which,
in turn, depends on the output size of the convolutional layer.

For one direction in a channel (feature map) of the convolutional layer, the output is
((28 – 5 + 2*0)/1) +1 = 24. The max pooling layer has nonoverlapping regions, so it down-
samples by 2 in each direction, i.e., 24/2 = 12. For one channel of the convolutional
layer, the output of the max pooling layer is 12 * 12 = 144. There are 20 channels in the
convolutional layer, so the output of the max pooling layer is 144 * 20 = 2880. This is the
size of the input to the fully connected layer.

The formula for overlapping regions gives the same result: For one direction of a channel,
the output is (((24 – 2 +0)/2) + 1 = 12. For one channel, the output is 144, and for all 20
channels in the convolutional layer, the output of the max pooling layer is 2880.

Initialize the weights of the fully connected layer from a Gaussian distribution with a
mean of 0 and a standard deviation of 0.0001.

layers(5).Weights = randn([10 2880])*0.0001;

randn([10 2880]) returns a 10-by-2880 matrix of values from a Gaussian distribution
with mean 0 and standard deviation 1. Multiplying the values by 0.0001 sets the
standard deviation of the Gaussian distribution equal to 0.0001.

Similarly, initialize the biases from a Gaussian distribution with a mean of 1 and a
standard deviation of 0.0001.

layers(5).Bias = randn([10 1])*0.0001+1;

The size of the bias vector is equal to the output size of the fully connected layer, which
is 10. randn([10 1]) returns a 10-by-1 vector of values from a Gaussian distribution
with a mean of 0 and a standard deviation of 1. Multiplying the values by 0.00001 sets
the standard deviation of values equal to 0.00001, and adding 1 sets the mean of the
Gaussian distribution equal to 1.

Input Arguments

outputSize — Size of output for fully connected layer
integer value
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Size of the output for the fully connected layer, specified as an integer value. For
classification problems, if this is the last layer before the softmax layer, then the output
size must be equal to the number of classes in the data. For regression problems, if this
is the last layer before the regression layer, then the output size must be equal to the
number of response variables.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'WeightLearnRateFactor',1.5,'Name','fullyconnect1' specifies
the learning rate for this layer is 1.5 times the global learning rate, and the name of the
layer as fullyconnect1.

'WeightLearnRateFactor' — Multiplier for learning rate of weights
1 (default) | scalar value

Multiplier for the learning rate of the weights, specified as the comma-separated pair
consisting of WeightLearnRateFactor and a scalar value.

trainNetwork multiplies this factor with the global learning rate to determine the
learning rate for the weights in this layer. It determines the global learning rate based on
the settings specified using trainingOptions.

Example: 'WeightLearnRateFactor',2 specifies that the learning rate for the weights
in this layer is twice the global learning rate.
Data Types: single | double

'BiasLearnRateFactor' — Multiplier for learning rate of bias
1 (default) | scalar value

Multiplier for the learning rate of the bias, specified as the comma-separated pair
consisting of BiasLearnRateFactor and a scalar value.

The software multiplies this factor with the global learning rate to determine the
learning rate for the bias in this layer.
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The software determines the global learning rate based on the settings specified using
the trainingOptions function.

Example: 'BiasLearnRateFactor',2 specifies that the learning rate for the bias in
this layer is twice the global learning rate.
Data Types: single | double

'WeightL2Factor' — L2 regularization factor for weights
1 (default) | scalar value

L2 regularization factor for the weights, specified as the comma-separated pair consisting
of WeightL2Factor and a scalar value.

The software multiplies this factor with the global L2 regularization factor to determine
the learning rate for the weights in this layer.

You can specify the global L2 regularization factor using the trainingOptions
function.
Example: 'WeightL2Factor',2 specifies that the L2 regularization for the weights in
this layer is twice the global L2 regularization factor.
Data Types: single | double

'BiasL2Factor' — Multiplier for L2 weight regularizer for biases
1 (default) | scalar value

Multiplier for the L2 weight regularizer for the biases, specified as the comma-separated
pair consisting of BiasL2Factor and a scalar value.

You can specify the global L2 regularization factor using the trainingOptions
function.
Example: 'BiasL2Factor',2 specifies that the L2 regularization for the bias in this
layer is twice the global L2 regularization factor.
Data Types: single | double

'Name' — Layer name
'' (default) | character vector

Layer name, specified as the comma-separated pair consisting of Name and a character
vector.
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Example: 'Name','fullconnect1'

Data Types: char

Output Arguments

fullconnectlayer — Fully connected layer
FullyConnectedLayer object

Fully connected layer, returned as a FullyConnectedLayer object.

For information on concatenating layers to construct convolutional neural network
architecture, see Layer.

Algorithms

The default for the initial weights is a Gaussian distribution with mean 0 and standard
deviation 0.01. The default for the initial bias is 0. You can manually change the
initialization for the weights and bias. See “Specify Initial Weight and Biases in Fully
Connected Layer” on page 1-699.

See Also

See Also
convolution2dLayer | FullyConnectedLayer | reluLayer

Introduced in R2016a
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imageInputLayer

Create an image input layer

Syntax

inputlayer = imageInputLayer(inputSize)

inputlayer = imageInputLayer(inputSize,Name,Value)

Description

inputlayer = imageInputLayer(inputSize) returns an image input layer.

inputlayer = imageInputLayer(inputSize,Name,Value) returns an image input
layer, with additional options specified by one or more Name,Value pair arguments. For
example, you can specify a name for the layer.

Examples

Create Image Input Layer

Create an image input layer for 28-by-28 color images. Specify that the software flips the
images from left to right at training time with a probability of 0.5.

inputlayer = imageInputLayer([28 28 3],'DataAugmentation','randfliplr')

inputlayer = 

  ImageInputLayer with properties:

                Name: ''

           InputSize: [28 28 3]

    DataAugmentation: 'randfliplr'
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       Normalization: 'zerocenter'

Input Arguments

inputSize — Size of input data
row vector of two or three integer numbers

Size of the input data, specified as a row vector of two integer numbers
corresponding to [height,width] or three integer numbers corresponding to
[height,width,channels].

If the inputSize is a vector of two numbers, then the software sets the channel size to 1.

Example: [200,200,3]

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'DataAugmentation','randcrop','Normalization','none','Name','input'

specifies that the software takes a random crop of the image at training time, does not
normalize the data, and assigns the name of the layer as input.

'DataAugmentation' — Data augmentation transforms
'none' (default) | 'randcrop' | 'randfliplr' | cell array of 'randcrop' and
'randfliplr'

Data augmentation transforms to use during training, specified as the comma-separated
pair consisting of 'DataAugmentation' and one of the following.

• 'none' — No data augmentation
• 'randcrop' — Take a random crop from the training image. The random crop has

the same size as the inputSize.
• 'randfliplr' — Randomly flip the input images from left to right with a 50%

chance in the vertical axis.
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• Cell array of 'randcrop' and 'randfliplr'. The software applies the
augmentation in the order specified in the cell array.

Augmentation of image data is another way of reducing overfitting [1], [2].
Example: 'DataAugmentation',{'randfliplr','randcrop'}

Data Types: char | cell

'Normalization' — Data transformation
'zerocenter' (default) | 'none'

Data transformation to apply every time data is forward-propagated through the input
layer, specified as the comma-separated pair consisting of 'Normalization' and one of
the following.

• 'zerocenter' — The software subtracts its mean from the training set.
• 'none' — No transformation.

Example: 'Normalization','none'

Data Types: char

'Name' — Name for the layer
'' (default) | character vector

Name for the layer, specified as the comma-separated pair consisting of Name and a
character vector.
Example: 'Name','inputlayer'

Data Types: char

Output Arguments

inputlayer — Input layer for the image data
ImageInputLayer object

Input layer for the image data, returned as an ImageInputLayer object.

For information on concatenating layers to construct convolutional neural network
architecture, see Layer.
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References
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See Also

See Also
convolution2dLayer | fullyConnectedLayer | ImageInputLayer |
maxPooling2dLayer

Introduced in R2016a
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maxPooling2dLayer
Create max pooling layer

Syntax
maxpoollayer = maxPooling2dLayer(poolSize)

maxpoollayer = maxPooling2dLayer(poolSize,Name,Value)

Description
maxpoollayer = maxPooling2dLayer(poolSize) returns a layer that performs max
pooling, dividing the input into rectangular regions and returning the maximum value of
each region. poolSize specifies the dimensions of a pooling region.

maxpoollayer = maxPooling2dLayer(poolSize,Name,Value) returns the
max pooling layer, with additional options specified by one or more Name,Value pair
arguments.

Examples
Max Pooling Layer with Non-Overlapping Pooling Regions

Create a max pooling layer with non-overlapping pooling regions, which down-samples by
a factor of 2.

maxpoollayer = maxPooling2dLayer(2,'Stride',2);

The height and width of the rectangular region (pool size) are both 2. This layer
creates pooling regions of size [2,2] and returns the maximum of the four elements in
each region. Because the stride (step size for moving along the images vertically and
horizontally) is also [2,2], the pooling regions do not overlap.

Max Pooling Layer with Overlapping Pooling Regions

Create a max pooling layer with overlapping pooling regions. Also add padding for the
top and bottom of the input.

maxpoollayer = maxPooling2dLayer([3,2],'Stride',2,'Padding',[1 0]);
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The height and width of the rectangular region (pool size) are 3 and 2. This layer creates
pooling regions of size [3,2] and returns the maximum of the six elements in each region.
Because the stride (step size for moving along the images vertically and horizontally) is
[2,2], the pooling regions overlap.

The value 1 for the Padding name-value pair indicates that the software adds a row of
zeros to the top and bottom of the input data. 0 indicates that no padding is added to the
right and left of the input data.

Input Arguments

poolSize — Height and width of pooling region
scalar value | vector of two scalar values

Height and width of a pooling region, specified as a scalar value or a vector of two scalar
values.

• If poolSize is a scalar, then the height and the width of the pooling region are the
same.

• If poolSize is a vector, then the vector must be of the form [h w], where h is the
height and w is the width.

If the Stride dimensions are less than the respective pooling dimensions, then the
pooling regions overlap.

Note that the padding dimensions (Padding) must be less than the pooling region
dimensions (poolSize).

Example: [2 1]

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Stride',[3,2],'Padding',[2,1],'Name','maxpool1' specifies that
the software takes steps of size 3 vertically and steps of size 2 horizontally as it traverses
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through the input. It adds two rows of zeros to the top and bottom, and a column of zeros
to the left and right of the input, and states the name of the layer as 'maxpool1'

'Stride' — Step size for traversing the input
[1,1] (default) | scalar value | vector of two scalar values

Step size for traversing the input vertically and horizontally, specified as the comma-
separated pair consisting of Stride and a scalar value or a vector of two scalar values.

• If Stride is a scalar value, then the software uses the same value for both
dimensions.

• If Stride is a vector, then it must be of the form [u,v], where u is the vertical stride
and v is the horizontal stride.

Example: For 'Stride',[2,3], the software first moves to the third observation
horizontally as it moves through the input. Once it covers the input horizontally, it
moves to the second observation vertically and again covers the input horizontally with
horizontal strides of 3. It repeats this process until it moves through the whole input.
Data Types: single | double

'Padding' — Size of padding to apply to input borders
[0,0] (default) | scalar value | vector of two scalar values

Size of the padding to apply to the input borders vertically and horizontally, specified as
the comma-separated pair consisting of Padding and a scalar value or a vector of two
scalar values.

• If Padding is a scalar value, then the software uses the same value for both
dimensions.

• If Padding is a vector, then it must be of the form [a,b], where a is the padding to be
applied to the top and the bottom of the input data and b is the padding to be applied
to the left and right.

Padding value must be smaller than the poolSize.

Example: For example, to add one row of padding to the top and bottom, and one column
of padding to the left and right of the input data, specify 'Padding',[1,1].

Data Types: single | double

'Name' — Name for the layer
'' (default) | character vector
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Name for the layer, specified as the comma-separated pair consisting of Name and a
character vector.
Example: 'Name','maxpool1'

Data Types: char

Output Arguments

maxpoollayer — Max pooling layer
MaxPooling2DLayer object

Max pooling layer, returned as a MaxPooling2DLayer object.

For information on concatenating layers to construct convolutional neural network
architecture, see Layer.

Definitions

Max-Pooling Layer

Max-pooling layer returns the maximum values of rectangular regions of its input.
The size of the rectangular regions are determined by the poolSize. For example, if
poolSize is [2,3], the software returns the maximum value of regions of height 2 and
width 3. The software scans through the input horizontally and vertically in step sizes
you can specify using Stride. If the poolSize is smaller than or equal to Stride, then
the pooling regions do not overlap.

Max-pooling layer does not perform any learning. It performs a down-sampling
operation. For nonoverlapping regions (poolSize and Stride are equal), if the input
to the max-pooling layer is n-by-n, and the pooling region size is h-by-h, then the max-
pooling layer down-samples the regions by h [1]. That is, output of the max-pooling layer
for one channel of a convolutional layer is n/h-by-n/h. For overlapping regions, the output
of a pooling layer is (Input Size – Pool Size + 2*Padding)/Stride + 1

References

[1] Nagi, J., F. Ducatelle, G. A. Di Caro, D. Ciresan, U. Meier, A. Giusti, F. Nagi, J.
Schmidhuber, L. M. Gambardella. ''Max-Pooling Convolutional Neural Networks
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for Vision-based Hand Gesture Recognition''. IEEE International Conference on
Signal and Image Processing Applications (ICSIPA2011), 2011.

See Also

See Also
averagePooling2dLayer | convolution2dLayer | MaxPooling2DLayer

Introduced in R2016a
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reluLayer

Create a Rectified Linear Unit (ReLU) layer

Syntax

layer = reluLayer()

layer = reluLayer(Name,Value)

Description

layer = reluLayer() returns a rectified linear unit (ReLU) layer. It performs a
threshold operation to each element, where any input value less than zero is set to zero,
i.e.,
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The ReLU layer does not change the size of its input.

layer = reluLayer(Name,Value) returns a ReLU layer, with the additional option
specified by the Name,Value pair argument.

Examples

Create ReLU Layer with Specified Name

Create a rectified linear unit layer with the name relu1.
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layer = reluLayer('Name','relu1');

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pair of Name,Value argument. Name is the argument
name and Value is the corresponding value. Name must appear inside single quotes ('
').

Example: 'Name','relu1' specifies the name of the layer as relu1.

'Name' — Name for the layer
'' (default) | character vector

Name for the layer, specified as the comma-separated pair consisting of Name and a
character vector.
Data Types: char

Output Arguments

layer — Rectified linear unit (ReLU) layer
ReLULayer object

Rectified linear unit layer, returned as a ReLULayer object.

For information on concatenating layers to construct convolutional neural network
architecture, see Layer.

References

[1] Nair, V. and G. E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Proc. 27th International Conference on Machine Learning, 2010.
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See Also

See Also
ReLULayer

Introduced in R2016a
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softmaxLayer
Create softmax layer for convolutional neural network

Syntax

smlayer = softmaxLayer()

smlayer = softmaxLayer(Name,Value)

Description

smlayer = softmaxLayer() returns a softmax layer for classification problems. The
softmax layer uses the softmax activation function.

smlayer = softmaxLayer(Name,Value) returns a softmax layer, with the additional
option specified by the Name,Value pair argument.

Examples

Create Softmax Layer with Specified Name

Create a softmax layer with the name sml1.

smlayer = softmaxLayer('Name','sml1');

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pair of Name,Value argument. Name is the argument
name and Value is the corresponding value. Name must appear inside single quotes ('
').

Example: 'Name','smlayer' specifies the name of the softmax layer as smlayer.
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'Name' — Name for the layer
'' (default) | character vector

Name for the layer, specified as the comma-separated pair consisting of Name and a
character vector.
Data Types: char

Output Arguments

smlayer — Softmax layer
SoftmaxLayer object

Softmax layer, returned as a SoftmaxLayer object.

For information on concatenating layers to construct convolutional neural network
architecture, see Layer.

Definitions

Softmax Function

For a classification problem with more than two classes, the output unit activation
function is the softmax function:
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The softmax function is also known as the normalized exponential and can be considered
the multi-class generalization of the logistic sigmoid function [1].

References

[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY,
2006.

See Also

See Also
classificationLayer | fullyConnectedLayer | SoftmaxLayer

Introduced in R2016a
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trainingOptions
Options for training neural network

Syntax
options = trainingOptions(solverName)

options = trainingOptions(solverName,Name,Value)

Description
options = trainingOptions(solverName) returns a set of training options for the
solver specified by solverName.

options = trainingOptions(solverName,Name,Value) returns a set of training
options with additional options specified by one or more Name,Value pair arguments.

Examples

Specify Training Options

Create a set of options for training a network using stochastic gradient descent with
momentum. Reduce the learning rate by a factor of 0.2 every 5 epochs. Set the maximum
number of epochs for training at 20, and use a mini-batch with 300 observations at each
iteration. Specify a path for saving checkpoint networks after every epoch.

options = trainingOptions('sgdm',...

      'LearnRateSchedule','piecewise',...

      'LearnRateDropFactor',0.2,... 

      'LearnRateDropPeriod',5,... 

      'MaxEpochs',20,... 

      'MiniBatchSize',300,...

      'CheckpointPath','C:\TEMP\checkpoint');

Plot Training Accuracy During Network Training

Plot the training accuracy at each iteration of the training process.

First, load the sample data.
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[XTrain,YTrain] = digitTrain4DArrayData;

Construct a simple network to classify the digit image data.

layers = [ ...

    imageInputLayer([28 28 1],'Normalization','none')

    convolution2dLayer(6,20)

    reluLayer

    maxPooling2dLayer(2,'Stride',2)

    fullyConnectedLayer(10)

    softmaxLayer

    classificationLayer];

Save the function plotTrainingAccuracy on the MATLAB® path that plots training
accuracy against the current iteration. plotTrainingAccuracy is defined at the end of
this example.

Specify the training options. Set 'OutputFcn' to be the plotTrainingAccuracy
function. For quick training, set 'MaxEpochs' to 5 and 'InitialLearnRate' to 0.1.
Train the network using trainNetwork.

options = trainingOptions('sgdm','Verbose',false, ...

    'MaxEpochs',5, ...

    'InitialLearnRate',0.1, ...

    'OutputFcn',@plotTrainingAccuracy);

net = trainNetwork(XTrain,YTrain,layers,options);

Use the custom function plotTrainingAccuracy to plot info.TrainingAccuracy
against info.Iteration at each function call.

function plotTrainingAccuracy(info)

persistent plotObj

if info.State == "start"

    plotObj = animatedline;

    xlabel("Iteration")

    ylabel("Training Accuracy")

elseif info.State == "iteration"

    addpoints(plotObj,info.Iteration,info.TrainingAccuracy)

    drawnow limitrate nocallbacks

end

end
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Plot Progress and Stop Training at Specified Accuracy

Plot the training accuracy at each iteration, and if the mean accuracy of the previous 50
iterations reaches 95%, then stop training early.

Load sample data.

[XTrain,YTrain] = digitTrain4DArrayData;

Construct a simple network to classify the digit image data.

layers = [ ...

    imageInputLayer([28 28 1],'Normalization','none')

    convolution2dLayer(6,20)

    reluLayer
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    maxPooling2dLayer(2,'Stride',2)

    fullyConnectedLayer(10)

    softmaxLayer

    classificationLayer];

Save the custom output functions plotTrainingAccuracy and
stopTrainingAtThreshold on the MATLAB® path. plotTrainingAccuracy plots
training progress, and if the mean accuracy of the previous 50 iterations reaches 95%,
then stopTrainingAtThreshold stops training early. These functions are defined at
the end of this example.

Specify custom output functions as a cell array of function handles. Set the output
functions to be plotTrainingAccuracy, and stopTrainingAtThreshold with a 95%
threshold.

functions = { ...

    @plotTrainingAccuracy, ...

    @(info) stopTrainingAtThreshold(info,95)};

Specify the training options. Set 'OutputFcn' to be the cell array of function handles
functions. Train the network using trainNetwork.

options = trainingOptions('sgdm','Verbose',false, ...

    'InitialLearnRate',0.1, ...

    'OutputFcn',functions);

net = trainNetwork(XTrain,YTrain,layers,options);

Update the plot at each iteration using plotTrainingAccuracy and
stopTrainingAtThreshold. Use the custom function plotTrainingAccuracy
to plot info.TrainingAccuracy against info.Iteration. Use
stopTrainingAtThreshold(info,thr) to stop training if the mean accuracy of the
previous 50 iterations is greater than thr.

function plotTrainingAccuracy(info)

persistent plotObj

if info.State == "start"

    plotObj = animatedline;

    xlabel("Iteration")

    ylabel("Training Accuracy")

elseif info.State == "iteration"

    addpoints(plotObj,info.Iteration,info.TrainingAccuracy)
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    drawnow limitrate nocallbacks

end

end

function stop = stopTrainingAtThreshold(info,thr)

stop = false;

if info.State ~= "iteration"

    return

end

persistent iterationAccuracy

% Append accuracy for this iteration

iterationAccuracy = [iterationAccuracy info.TrainingAccuracy];

% Evaluate mean of iteration accuracy and remove oldest entry

if numel(iterationAccuracy) == 50

    stop = mean(iterationAccuracy) > thr;

    iterationAccuracy(1) = [];

end

end
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• “Create Simple Deep Learning Network for Classification”
• “Transfer Learning and Fine-Tuning of Convolutional Neural Networks”
• “Resume Training from a Checkpoint Network”
• “Deep Learning with Big Data on GPUs and in Parallel”

Input Arguments

solverName — Solver to use for training the network
'sgdm'
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Solver to use for training the network. You must specify 'sgdm' (stochastic gradient
descent with momentum).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'InitialLearningRate',0.03,'L2Regularization',0.0005,'LearnRateSchedule','piecewise'

specifies the initial learning rate as 0.03, and the L2 regularization factor as 0.0005,
and instructs the software to drop the learning rate every given number of epochs by
multiplying with a set factor.

'CheckpointPath' — Path for saving checkpoint networks
'' (default) | character vector

Path for saving the checkpoint networks, specified as the comma-separated pair
consisting of 'CheckpointPath' and a character vector.

• If you do not specify a path (i.e., ''), then the software does not save any checkpoint
networks.

• If you specify a path, then trainNetwork saves checkpoint networks to this path
after every epoch. It automatically and uniquely names each network. You can then
load any of these networks and resume training from that network.

If the directory is not already created, you must first create it before specifying
the path to save the checkpoint networks. If the path you specify is wrong, then
trainingOptions returns an error.

Example: 'CheckpointPath','C:\Temp\checkpoint'

Data Types: char

'ExecutionEnvironment' — Hardware resource for trainNetwork
'auto' (default) | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'

Hardware resource for trainNetwork to train the network, specified as the comma-
separated pair consisting of 'ExecutionEnvironment' and one of the following:
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• 'auto' — Use a GPU if it is available, otherwise uses the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.
• 'multi-gpu' — Use multiple GPUs on one machine, using a local parallel pool. If no

pool is already open, trainNetwork opens one with one worker per supported GPU
device.

• 'parallel' — Use a local parallel pool or compute cluster. If no pool is already open,
trainNetwork opens one using the default cluster profile. If the pool has access to
GPUs, then trainNetwork uses them and excess workers are left idle. If the pool
does not have GPUs, then the training takes place on all cluster CPUs.

'gpu', 'multi-gpu', and 'parallel' options require Parallel Computing Toolbox.
Additionally, to use a GPU, you must have a CUDA®-enabled NVIDIA® GPU with
compute capability 3.0 or higher. If one of these options are chosen and Parallel
Computing Toolbox or a suitable GPU is not available, trainNetwork returns an error.

To see an improvement in performance when training in parallel, you might need to
increase MiniBatchSize to offset the communication overhead.

Example: 'ExecutionEnvironment','cpu'

Data Types: char

'InitialLearnRate' — Initial learning rate
0.01 (default) | a positive scalar value

Initial learning rate used for training, specified as the comma-separated pair consisting
of 'InitialLearnRate' and a positive scalar value. If the learning rate is too low, the
training takes a long time, but if it is too high the training might reach a suboptimal
result.
Example: 'InitialLearnRate',0.03

Data Types: single | double

'LearnRateSchedule' — Option for dropping learning rate during training
'none' (default) | 'piecewise'

Option for dropping the learning rate during training, specified as the comma-separated
pair consisting of 'LearnRateSchedule' and one of the following:

• 'none' — The learning rate remains constant through training.
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• 'piecewise' — The software updates the learning rate every certain number of
epochs by multiplying with a factor. Use the LearnRateDropFactor name-value
pair argument to specify the value of this factor. Use the LearnRateDropPeriod
name-value pair argument to specify the number of epochs between multiplications.

Example: 'LearnRateSchedule','piecewise'

'LearnRateDropFactor' — Factor for dropping the learning rate
0.1 (default) | a scalar value from 0 to 1

Factor for dropping the learning rate, specified as the comma-separated pair consisting of
'LearnRateDropFactor' and a scalar value. This option is valid only when the value
of LearnRateSchedule is 'piecewise'.

LearnRateDropFactor is a multiplicative factor to apply to the learning rate every
time a certain number of epochs has passed. You can specify the number of epochs using
the LearnRateDropPeriod name-value pair argument.

Example: 'LearnRateDropFactor',0.02

Data Types: single | double

'LearnRateDropPeriod' — Number of epochs for dropping learning rate
10 (default) | integer value

Number of epochs for dropping the learning rate, specified as the comma-separated pair
consisting of 'LearnRateDropPeriod' and an integer value. This option is valid only
when the value of LearnRateSchedule is 'piecewise'.

The software multiplies the global learning rate with the drop factor every time this
number of epochs passes. The drop factor is specified by the LearnRateDropFactor
name-value pair argument.
Example: 'LearnRateDropPeriod',3

Data Types: single | double

'L2Regularization' — Factor for L2 regularizer
0.0001 (default) | positive scalar value

Factor for L2 regularizer (weight decay), specified as the comma-separated pair consisting
of 'L2Regularization' and a positive scalar value.

You can specify a multiplier for this L2 regularizer when creating the convolutional layer
and fully connected layer.
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Example: 'L2Regularization',0.0005

Data Types: single | double

'MaxEpochs' — Maximum number of epochs
30 (default) | an integer value

Maximum number of epochs to use for training, specified as the comma-separated pair
consisting of 'MaxEpochs' and an integer value.

An iteration is one step taken in the gradient descent algorithm towards minimizing the
loss function using a mini batch. An epoch is the full pass of the training algorithm over
the entire training set.
Example: 'MaxEpochs',20

Data Types: single | double

'MiniBatchSize' — Size of mini-batch
128 (default) | an integer value

Size of the mini-batch to use for each training iteration, specified as the comma-
separated pair consisting of 'MiniBatchSize' and an integer value. A mini-batch is a
subset of the training set that is used to evaluate the gradient of the loss function and
update the weights. See “Stochastic Gradient Descent with Momentum” on page 1-731.
Example: 'MiniBatchSize',256

Data Types: single | double

'Momentum' — Contribution of the previous gradient step
0.9 (default) | a scalar value from 0 to 1

Contribution of the gradient step from the previous iteration to the current iteration
of the training, specified as the comma-separated pair consisting of 'Momentum' and
a scalar value from 0 to 1. A value of 0 means no contribution from the previous step,
whereas a value of 1 means maximal contribution from the previous step.
Example: 'Momentum',0.8

Data Types: single | double

'Shuffle' — Indicator for data shuffle
'once' (default) | 'never'
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Indicator for data shuffle, specified as the comma-separated pair consisting of
'Shuffle' and one of the following:

• 'once' — The software shuffles the data once before training
• 'never' — The software does not shuffle the data

Example: 'Shuffle','never'

'Verbose' — Indicator to display the information on the training progress
1 (default) | 0

Indicator to display the information about the training progress in the command window,
specified as the comma-separated pair consisting of 'Verbose' and either 1 (true) or 0
(false).

The displayed information includes the number of epochs, number of iterations, time
elapsed, mini-batch accuracy, and base learning rate. When training a regression
network, RMSE is shown instead of accuracy.
Example: 'Verbose',0

Data Types: logical

'VerboseFrequency' — Frequency of verbose printing
50 (default) | an integer value

Number of iterations between printing to the command window. Only has an effect if
'Verbose' is set to true.

Data Types: single | double

'WorkerLoad' — Relative division of load between workers
evenly divided (default) | numeric vector

Relative division of load between workers of GPUs or CPUs
for the 'ExecutionEnvironment','multi-gpu' or
'ExecutionEnvironment','parallel' options, specified as a numeric vector. This
vector must contain one value per worker in the parallel pool. For a vector w , each
worker gets w w

i i

i

Â  of the work. Use this option to balance the workload between

unevenly performing hardware.
Data Types: double
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'OutputFcn' — Custom output functions
function handle | cell array of function handles

Custom output functions to call during training, specified as a function handle or cell
array of function handles. After each iteration, trainNetwork calls the specified
functions and passes a struct containing information from the current iteration via the
following fields.

Field Description

Epoch Current epoch number
Iteration Current iteration number
TimeSinceStart Time in seconds since the start of training
TrainingLoss Current mini-batch loss
BaseLearnRate Current base learning rate
TrainingAccuracy Accuracy of current mini batch (for

classification networks)
TrainingRMSE (Regression network) RMSE of the current mini-batch (for

regression networks)
State Current training state. (Possible values are

"start", "iteration", or "done".)

You can use custom output functions to display or plot progress information, or to stop
training early. For an example showing how to plot training accuracy during training,
see “Plot Training Accuracy During Network Training” on page 1-719. To stop training
early, the function must return true. For an example showing how to stop training early,
see “Plot Progress and Stop Training at Specified Accuracy” on page 1-721.
Data Types: function_handle | cell

Output Arguments

options — Training options
object

Training options returned as an object.

For the sgdm training solver, options is a TrainingOptionsSGDM object.
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Algorithms

Initial Weights and Biases

The default for the initial weights is a Gaussian distribution with a mean of 0 and a
standard deviation of 0.01. The default for the initial bias value is 0. You can manually
change the initialization for the weights and biases. See “Specify Initial Weight and
Biases in Convolutional Layer” on page 1-679 and “Specify Initial Weight and Biases in
Fully Connected Layer” on page 1-699.

Stochastic Gradient Descent with Momentum

The gradient descent algorithm updates the parameters (weights and biases) so as
to minimize the error function by taking small steps in the direction of the negative
gradient of the loss function [1]:

qq qq qq
l l l+ = - — ( )1 a E ,

where l  stands for the iteration number, a > 0  is the learning rate, qq  is the parameter
vector, and E qq( )  is the loss function. The gradient of the loss function, — ( )E qq , is
evaluated using the entire training set, and the standard gradient descent algorithm
uses the entire data set at once. The stochastic gradient descent algorithm evaluates the
gradient, hence updates the parameters, using a subset of the training set. This subset is
called a mini-batch.

Each evaluation of the gradient using the mini-batch is an iteration. At each iteration,
the algorithm takes one step towards minimizing the loss function. The full pass of
the training algorithm over the entire training set using mini-batches is an epoch.
You can specify the mini-batch size and the maximum number of epochs using the
MiniBatchSize and MaxEpochs name-value pair arguments, respectively.

The gradient descent algorithm might oscillate along the steepest descent path to the
optimum. Adding a momentum term to the parameter update is one way to prevent this
oscillation [2]. The SGD update with momentum is

qq qq qq qq qq
l l l l l+ -= - — ( ) + -( )1 1a gE ,
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where g  determines the contribution of the previous gradient step to the current
iteration. You can specify this value using the Momentum name-value pair argument.

By default, the software shuffles the data once before training. You change this setting
using the Shuffle name-value pair argument.

L2 Regularization

Adding a regularization term for the weights to the loss function E qq( )  is one way to
reduce overfitting, hence the complexity of a neural network [1], [2]. The regularization
term is also called weight decay. The loss function with the regularization term takes the
form

E E
R

qq qq( ) = ( ) + W ( )l w ,

where w  is the weight vector, l  is the regularization factor (coefficient), and the
regularization function, W ( )w  is:

W ( ) =w w w

1

2

T ..

Note that the biases are not regularized [2]. You can specify the regularization factor, l ,
using the L2Regularization name-value pair argument.

Save Checkpoint Networks and Resume Training

trainNetwork enables you to save checkpoint networks as .mat files during training.
You can then resume training from any of these checkpoint networks. If you want
trainNetwork to save checkpoint networks, then you must specify the name of the path
using the CheckpointPath name-value pair argument in the call to trainingOptions. If
the path you specify is wrong, then trainingOptions returns an error.

trainNetwork automatically assigns unique names to these checkpoint network files.
For example, convnet_checkpoint__351__2016_11_09__12_04_23.mat, where 351
is the iteration number, 2016_11_09 is the date and 12_04_21 is the time trainNetwork
saves the network. You can load any of these by double clicking on them or typing, for
example,
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load convnet_checkpoint__351__2016_11_09__12_04_23.mat

in the command line. You can then resume training by using the layers of this network in
the call to trainNetwork, for example,

trainNetwork(Xtrain,Ytrain,net.Layers,options)

You must manually specify the training options and the input data as the checkpoint
network does not contain this information.

References

[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY,
2006.

[2] Murphy, K. P. Machine Learning: A Probabilistic Perspective. The MIT Press,
Cambridge, Massachusetts, 2012.

See Also

See Also
convolution2dLayer | fullyConnectedLayer | TrainingOptionsSGDM |
trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning and Fine-Tuning of Convolutional Neural Networks”
“Resume Training from a Checkpoint Network”
“Deep Learning with Big Data on GPUs and in Parallel”
“Introduction to Convolutional Neural Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”

Introduced in R2016a
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trainNetwork

Train a convolutional network

Use trainNetwork to train your convolutional neural network (ConvNet, CNN) for
a classification or regression problem after defining the layers of your network and
specifying the training options. You can train a ConvNet on either a CPU or a GPU
or multiple GPUs and/or in parallel. Training on a GPU or in parallel requires the
Parallel Computing Toolbox. Using a GPU requires a CUDA-enabled NVIDIA GPU with
compute capability 3.0 or higher. Specify the training parameters including the execution
environment using the trainingOptions function.

Syntax

trainedNet = trainNetwork(imds,layers,options)

trainedNet = trainNetwork(X,Y,layers,options)

trainedNet = trainNetwork(tbl,layers,options)

trainedNet = trainNetwork(tbl,responseName,layers,options)

trainedNet = trainNetwork(tbl,responseNames,layers,options)

[trainedNet,traininfo] = trainNetwork( ___ )

Description

trainedNet = trainNetwork(imds,layers,options) returns a trained network
for classification problems. imds stores the input image data, layers defines the
convolutional neural network (ConvNet) architecture, and options defines the training
options.

trainedNet = trainNetwork(X,Y,layers,options) returns a trained network for
classification and regression problems. X contains the predictor variables and Y contains
the categorical labels or numeric responses.

trainedNet = trainNetwork(tbl,layers,options) returns a trained network
for classification and regression problems. tbl contains the predictors and the targets or
response variables. The predictors must be in the first column of tbl. For information on
the targets or response variables, see the tbl argument description.
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trainedNet = trainNetwork(tbl,responseName,layers,options) returns a
trained network for classification and regression problems. The predictors must be in the
first column of tbl. The responseName argument specifies the response variable in the
table tbl.

trainedNet = trainNetwork(tbl,responseNames,layers,options) returns a
trained network for regression problems. The predictors must be in the first column of
tbl. The responseNames argument specifies the response variables in the table tbl.

[trainedNet,traininfo] = trainNetwork( ___ ) also returns information on the
training for any of the input arguments.

Examples

Train a Convolutional Neural Network Using Data in ImageDatastore

Load the data as an ImageDatastore object.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos',...

    'nndatasets','DigitDataset');

digitData = imageDatastore(digitDatasetPath,...

        'IncludeSubfolders',true,'LabelSource','foldernames');

The data store contains 10000 synthetic images of digits 0-9. The images are generated
by applying random transformations to digit images created using different fonts. Each
digit image is 28-by-28 pixels.

Display some of the images in the datastore.

figure;

perm = randperm(10000,20);

for i = 1:20

    subplot(4,5,i);

    imshow(digitData.Files{perm(i)});

end
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Check the number of images in each digit category.

digitData.countEachLabel

ans =

  10×2 table

    Label    Count

    _____    _____

    0        1000 

    1        1000 
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    2        1000 

    3        1000 

    4        1000 

    5        1000 

    6        1000 

    7        1000 

    8        1000 

    9        1000 

The data contains an equal number of images per category.

Divide the data set so that each category in the training set has 750 images and the
testing set has the remaining images from each label.

trainingNumFiles = 750;

rng(1) % For reproducibility

[trainDigitData,testDigitData] = splitEachLabel(digitData,...

    trainingNumFiles,'randomize');

splitEachLabel splits the image files in digitData into two new datastores,
trainDigitData and testDigitData.

Define the convolutional neural network architecture.

layers = [imageInputLayer([28 28 1]);

          convolution2dLayer(5,20);

          reluLayer();

          maxPooling2dLayer(2,'Stride',2);

          fullyConnectedLayer(10);

          softmaxLayer();

          classificationLayer()];

Set the options to default settings for the stochastic gradient descent with momentum.
Set the maximum number of epochs at 20, and start the training with an initial learning
rate of 0.001.

options = trainingOptions('sgdm','MaxEpochs',20,...

 'InitialLearnRate',0.0001);

Train the network.

convnet = trainNetwork(trainDigitData,layers,options);
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Training on single GPU.

Initializing image normalization.

|=========================================================================================|

|     Epoch    |   Iteration  | Time Elapsed |  Mini-batch  |  Mini-batch  | Base Learning|

|              |              |  (seconds)   |     Loss     |   Accuracy   |     Rate     |

|=========================================================================================|

|            1 |            1 |         0.06 |       3.0845 |       13.28% |       0.0001 |

|            1 |           50 |         0.72 |       1.0945 |       65.63% |       0.0001 |

|            2 |          100 |         1.43 |       0.7276 |       74.22% |       0.0001 |

|            3 |          150 |         2.14 |       0.4743 |       83.59% |       0.0001 |

|            4 |          200 |         2.85 |       0.3086 |       91.41% |       0.0001 |

|            5 |          250 |         3.56 |       0.2324 |       92.97% |       0.0001 |

|            6 |          300 |         4.25 |       0.1542 |       97.66% |       0.0001 |

|            7 |          350 |         4.95 |       0.1315 |       97.66% |       0.0001 |

|            7 |          400 |         5.63 |       0.0944 |       96.09% |       0.0001 |

|            8 |          450 |         6.33 |       0.0668 |       98.44% |       0.0001 |

|            9 |          500 |         7.02 |       0.0458 |       99.22% |       0.0001 |

|           10 |          550 |         7.73 |       0.0544 |      100.00% |       0.0001 |

|           11 |          600 |         8.43 |       0.0660 |       99.22% |       0.0001 |

|           12 |          650 |         9.12 |       0.0338 |      100.00% |       0.0001 |

|           13 |          700 |         9.82 |       0.0340 |      100.00% |       0.0001 |

|           13 |          750 |        10.51 |       0.0370 |       99.22% |       0.0001 |

|           14 |          800 |        11.21 |       0.0264 |      100.00% |       0.0001 |

|           15 |          850 |        11.91 |       0.0182 |      100.00% |       0.0001 |

|           16 |          900 |        12.61 |       0.0234 |      100.00% |       0.0001 |

|           17 |          950 |        13.32 |       0.0224 |      100.00% |       0.0001 |

|           18 |         1000 |        14.01 |       0.0160 |      100.00% |       0.0001 |

|           19 |         1050 |        14.70 |       0.0233 |      100.00% |       0.0001 |

|           19 |         1100 |        15.39 |       0.0245 |      100.00% |       0.0001 |

|           20 |         1150 |        16.09 |       0.0154 |      100.00% |       0.0001 |

|           20 |         1160 |        16.23 |       0.0146 |      100.00% |       0.0001 |

|=========================================================================================|

Run the trained network on the test set that was not used to train the network and
predict the image labels (digits).

YTest = classify(convnet,testDigitData);

TTest = testDigitData.Labels;

Calculate the accuracy.

accuracy = sum(YTest == TTest)/numel(TTest)

accuracy =
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    0.9852

Accuracy is the ratio of the number of true labels in the test data matching the
classifications from classify, to the number of images in the test data. In this case about
98.5% of the digit estimations match the true digit values in the test set.

Construct and Train a Convolutional Neural Network

Load the training data.

load lettersTrainSet

XTrain contains 1500 28-by-28 grayscale images of the letters A, B, and C in a 4-D array.
There are equal numbers of each letter in the data set. TTrain contains the categorical
array of the letter labels.

Display some of the letter images.

figure;

perm = randperm(1500,20);

for i = 1:20

    subplot(4,5,i);

    imshow(XTrain(:,:,:,perm(i)));

end
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Define the convolutional neural network architecture.

layers = [imageInputLayer([28 28 1]);

          convolution2dLayer(5,16);

          reluLayer();

          maxPooling2dLayer(2,'Stride',2);

          fullyConnectedLayer(3);

          softmaxLayer();

          classificationLayer()];

Set the options to default settings for the stochastic gradient descent with momentum.

options = trainingOptions('sgdm');

Train the network.
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rng('default') % For reproducibility

net = trainNetwork(XTrain,TTrain,layers,options);

Training on single GPU.

Initializing image normalization.

|=========================================================================================|

|     Epoch    |   Iteration  | Time Elapsed |  Mini-batch  |  Mini-batch  | Base Learning|

|              |              |  (seconds)   |     Loss     |   Accuracy   |     Rate     |

|=========================================================================================|

|            1 |            1 |         3.55 |       1.0994 |       27.34% |       0.0100 |

|            5 |           50 |         4.66 |       0.2175 |       98.44% |       0.0100 |

|           10 |          100 |         5.42 |       0.0238 |      100.00% |       0.0100 |

|           14 |          150 |         6.18 |       0.0108 |      100.00% |       0.0100 |

|           19 |          200 |         6.93 |       0.0088 |      100.00% |       0.0100 |

|           23 |          250 |         7.68 |       0.0048 |      100.00% |       0.0100 |

|           28 |          300 |         8.44 |       0.0035 |      100.00% |       0.0100 |

|           30 |          330 |         8.88 |       0.0052 |      100.00% |       0.0100 |

|=========================================================================================|

Run the trained network on a test set that was not used to train the network and predict
the image labels (letters).

load lettersTestSet;

XTest contains 1500 28-by-28 grayscale images of the letters A, B, and C in a 4-D
array. There is again equal numbers of each letter in the data set. TTest contains the
categorical array of the letter labels.

YTest = classify(net,XTest);

Calculate the accuracy.

accuracy = sum(YTest == TTest)/numel(TTest)

accuracy =

    0.9273

• “Resume Training from a Checkpoint Network”
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Input Arguments

imds — Images with labels for classification problems
ImageDatastore object

Images, specified as an ImageDatastore object with categorical labels. You can store
data in ImageDatastore for only classification problems.

ImageDatastore allows batch-reading of JPG or PNG image files using pre-fetching. If
you use a custom function for reading the images, pre-fetching does not happen. For more
information about this data type, see ImageDatastore.

X — Images
4-D numeric array

Images, specified as a 4-D numeric array. The first three dimensions must be the height,
width, and channels, and the last dimension must index the individual images.

If there are NaNs in the array, they are propagated through the training, however, in
most cases the training fails to converge.
Data Types: single | double

Y — Responses for a classification or a regression problem
array of categorical responses | numeric matrix | 4-D numeric array

Responses for a classification or a regression problem, specified as one of the following:

• For a classification problem, Y is a categorical vector containing the image labels.
• For a regression problem, Y can be an

• n-by-r numeric matrix, where n is the number of observations and r is the number
of responses

• h-by-w-by-c-by-n numeric array, where n is the number of observations and h-
by-w-by-c is the size of a single response.

Responses must not contain NaNs.

Data Types: categorical | double

tbl — Input data
table
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Input data, specified as a table. tbl must contain the predictors in the first column as
either absolute or relative image paths or images. The type and location of the responses
depend on the problem:

• For a classification problem, the response must be a categorical variable containing
labels for the images. If the name of the response variable is not specified in the call
to trainNetwork, the responses must be in the second column. If the responses are
in a different column of tbl, then you must specify the response variable name using
the responseName positional argument.

• For a regression problem, the responses must be numerical values in the column
or columns after the first one. The responses can be either in multiple columns as
scalars or in a single column as numeric vectors or cell arrays containing numeric 3-
D arrays. When you do not specify the name of the response variable or variables,
trainNetwork accepts the remaining columns of tbl as the response variables.
You can specify the response variable names using the responseName positional
argument.

Responses must not contain NaNs. If there are NaNs in the predictor data, they are
propagated through the training, however, in most cases the training fails to converge.
Data Types: table

responseName — Name of response variable for a regression and classification problem
character vector

Name of the response variable for a regression and classification problem, specified as a
character vector that shows the name of the variable containing the responses in tbl.

Data Types: char

responseNames — Names of response variables for a regression problem
cell array

Names of the response variables for a regression problem, specified as a cell array of
character vectors that show the names of the variables containing the responses in tbl.

Data Types: cell

layers — An array of network layers
Layer object

An array of network layers, specified as a Layer object. layers can be the layers of a
checkpoint network trainNetwork previously saved. In that case, enter the network
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layers using the dot notation. For example, if the name of the checkpoint network is net,
then enter net.Layers for the layers argument.

options — Training options
TrainingOptionsSGDM object

Training options, specified as a TrainingOptionsSGDM object returned by the
trainingOptions function. SGDM stands for the stochastic gradient descent with
momentum solver.

Output Arguments

trainedNet — Trained network
SeriesNetwork object

Trained network, returned as a SeriesNetwork object.

traininfo — Information on the training
structure

Information on the training, returned as a structure with the following fields.

• TrainingLoss — Loss function value at each iteration
• TrainingAccuracy — Training accuracy at each iteration if network is a

classification network
• TrainingRMSE — Training RMSE at each iteration if network is a regression

network
• BaseLearnRate — The learning rate at each iteration

Definitions

Save Checkpoint Networks and Resume Training

trainNetwork enables you to save checkpoint networks as .mat files during training.
You can then resume training from any of these checkpoint networks. If you want
trainNetwork to save checkpoint networks, then you must specify the name of the path
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using the CheckpointPath name-value pair argument in the call to trainingOptions. If
the path you specify is wrong, then trainingOptions returns an error.

trainNetwork automatically assigns unique names to these checkpoint network files.
For example, convnet_checkpoint__351__2016_11_09__12_04_23.mat, where 351
is the iteration number, 2016_11_09 is the date and 12_04_21 is the time trainNetwork
saves the network. You can load any of these by double clicking on them or typing, for
example,

load convnet_checkpoint__351__2016_11_09__12_04_23.mat

in the command line. You can then resume training by using the layers of this network in
the call to trainNetwork, for example,

trainNetwork(Xtrain,Ytrain,net.Layers,options)

You must manually specify the training options and the input data as the checkpoint
network does not contain this information.

See Also

See Also
imageInputLayer | SeriesNetwork | trainingOptions

Topics
“Resume Training from a Checkpoint Network”

Introduced in R2016a
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activations
Class: SeriesNetwork

Compute convolutional neural network layer activations

You can extract features using a trained convolutional neural network (ConvNet, CNN)
on either a CPU or GPU. Using a GPU requires the Parallel Computing Toolbox and
a CUDA-enabled NVIDIA GPU with compute capability 3.0 or higher. Specify the
hardware requirements using the ExecutionEnvironment name-value pair argument.

Syntax

features = activations(net,X,layer)

features = activations(net,X,layer,Name,Value)

Description

features = activations(net,X,layer) returns network activations for a specific
layer using the trained network net and the data in X.

features = activations(net,X,layer,Name,Value) returns network activations
for a specific layer with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify the format of the output trainedFeatures.

Input Arguments

net — Trained network
SeriesNetwork object

Trained network, specified as a SeriesNetwork object, returned by the trainNetwork
function.

X — Data for extracting features
3-D array of a single image | 4-D array of images | ImageDatastore object | table
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Data for extracting features, specified as an array of a single image, a 4-D array of
images, images stored as an ImageDatastore, or images or image paths in a table.

• If X is a single image, then the dimensions correspond to the height, width, and
channels of the image.

• If X is an array of images, then the first three dimensions correspond to height,
width, and channels of an image, and the fourth dimension corresponds to the image
number.

• Images that are stored as an ImageDatastore object. For more information about
this data type, see ImageDatastore.

• A table, where the first column contains either image paths or images.

For 'OutputAs','channels' option, the input data can be of different size than the
data used for training. For other output options, the input data has to be the same size as
the data used for training.
Data Types: single | double | table

layer — Layer to extract features from
numeric index | character vector

Layer to extract features from, specified as a numeric index for the layer or a character
vector that corresponds with one of the network layer names.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'OutputAs' — Format of output activations
'rows' (default) | 'columns' | 'channels'

Format of output activations, specified as the comma-separated pair consisting of
'OutputAs' and one of the following:

• 'rows' — Y is an n-by-m matrix, where n is the number of observations, and m is the
number of output elements from the chosen layer.
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• 'columns' — Y is an m-by-n matrix, where m is the number of output elements from
the chosen layer, and n is the number of observations. Each column of the matrix is
the output for a single observation.

• 'channels' — Y is an h-by-w-by-c-by-n array, where h, w, and c are the height,
width, and number of channels for the output of the chosen layer. n is the number of
observations. Each h-by-w-by-c sub-array is the output for a single observation.

For 'OutputAs','channels' option, the input data in X can be of different size than
the data used for training. For other output options, the data in X has to be the same size
as the data used for training.
Example: 'OutputAs','columns'

Data Types: char

'MiniBatchSize' — Size of mini-batches for prediction
128 (default) | integer number

Size of mini-batches for prediction, specified as an integer number. Larger mini-batch
sizes require more memory, but lead to faster predictions.
Example: 'MiniBatchSize',256

Data Types: single | double

'ExecutionEnvironment' — Hardware resource for activations
'auto' (default) | 'gpu' | 'cpu'

Hardware resource for activations to run the network, specified as the comma-
separated pair consisting of 'ExecutionEnvironment' and one of the following:

• 'auto' — Use a GPU if it is available, otherwise uses the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox

and a CUDA-enabled NVIDIA GPU with compute capability 3.0 or higher. If a
suitable GPU is not available, activations returns an error message.

• 'cpu' — Uses the CPU.

Example: 'ExecutionEnvironment','cpu'

Data Types: char
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Output Arguments

features — Activations from a network layer
n-by-m matrix | m-by-n matrix | h-by-w-by-c-by-n array

Activations from a network layer, returned as one of the following depending on the
value of the 'OutputAs' name-value pair argument.

trainedFeatures 'OutputAs' value

n-by-m matrix 'rows'

m-by-n matrix 'columns'

h-by-w-by-c-by-n array 'channels'

Data Types: single

Examples

Extract Features from Trained Convolutional Neural Network

Load the sample data.

[XTrain,TTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a
28-by-28-by-1-by-4940 array, where 28 is the height and 28 is the width of the images.
1 is the number of channels and 4940 is the number of synthetic images of handwritten
digits. TTrain is a categorical vector containing the labels for each observation.

Construct the convolutional neural network architecture.

layers = [imageInputLayer([28 28 1]);

          convolution2dLayer(5,20);

          reluLayer();

          maxPooling2dLayer(2,'Stride',2);

          fullyConnectedLayer(10);

          softmaxLayer();

          classificationLayer()];

Set the options to default settings for the stochastic gradient descent with momentum.
Specify the GPU as the hardware to train on. This option requires Parallel Computing
Toolbox™ and a CUDA®-enabled NVIDIA® GPU with compute capability 3.0 or higher.
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options = trainingOptions('sgdm','ExecutionEnvironment','gpu');

Train the network.

rng('default')

net = trainNetwork(XTrain,TTrain,layers,options);

Initializing image normalization.

|=========================================================================================|

|     Epoch    |   Iteration  | Time Elapsed |  Mini-batch  |  Mini-batch  | Base Learning|

|              |              |  (seconds)   |     Loss     |   Accuracy   |     Rate     |

|=========================================================================================|

|            1 |            1 |         0.01 |       2.3026 |        7.81% |       0.0100 |

|            2 |           50 |         0.46 |       2.2735 |       33.59% |       0.0100 |

|            3 |          100 |         0.92 |       1.6613 |       48.44% |       0.0100 |

|            4 |          150 |         1.38 |       1.1803 |       64.06% |       0.0100 |

|            6 |          200 |         1.89 |       1.0499 |       64.06% |       0.0100 |

|            7 |          250 |         2.37 |       0.8392 |       76.56% |       0.0100 |

|            8 |          300 |         2.86 |       0.6981 |       77.34% |       0.0100 |

|            9 |          350 |         3.34 |       0.7084 |       77.34% |       0.0100 |

|           11 |          400 |         3.87 |       0.4902 |       87.50% |       0.0100 |

|           12 |          450 |         4.36 |       0.3839 |       91.41% |       0.0100 |

|           13 |          500 |         4.83 |       0.2986 |       92.19% |       0.0100 |

|           15 |          550 |         5.31 |       0.2583 |       93.75% |       0.0100 |

|           16 |          600 |         5.79 |       0.2009 |       97.66% |       0.0100 |

|           17 |          650 |         6.27 |       0.2642 |       92.97% |       0.0100 |

|           18 |          700 |         6.77 |       0.1448 |       97.66% |       0.0100 |

|           20 |          750 |         7.28 |       0.1314 |       96.88% |       0.0100 |

|           21 |          800 |         7.77 |       0.1232 |       97.66% |       0.0100 |

|           22 |          850 |         8.25 |       0.1009 |       98.44% |       0.0100 |

|           24 |          900 |         8.72 |       0.1051 |      100.00% |       0.0100 |

|           25 |          950 |         9.20 |       0.1483 |       97.66% |       0.0100 |

|           26 |         1000 |         9.67 |       0.0743 |       99.22% |       0.0100 |

|           27 |         1050 |        10.15 |       0.0603 |      100.00% |       0.0100 |

|           29 |         1100 |        10.64 |       0.0769 |       99.22% |       0.0100 |

|           30 |         1150 |        11.11 |       0.0524 |      100.00% |       0.0100 |

|           30 |         1170 |        11.31 |       0.0566 |      100.00% |       0.0100 |

|=========================================================================================|

In fact, trainNetwork, by default, uses a GPU to train the network, when available. If
there is no available GPU, then it uses a CPU. Training a convolutional neural network
on a GPU or in parallel requires Parallel Computing Toolbox™ and a CUDA®-enabled
NVIDIA® GPU with compute capability 3.0 or higher. There are also other hardware
options such as training in parallel or using multiple GPUs. You can specify these
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options using the 'ExecutionEnvironment' name-value pair argument in the call to
the trainingOptions function.

Make predictions, but rather than taking the output from the last layer, specify the
second ReLU layer (the sixth layer) as the output layer.

trainFeatures = activations(net,XTrain,6);

These predictions from an inner layer are known as activations or features .
activations method, by default, also uses a CUDA-enabled GPU with compute
capability 3.0, when available. You can also choose to run activations on a CPU using the
'ExecutionEnvironment','cpu' name-value pair argument.

You can use the returned features to train a support vector machine using the Statistics
and Machine Learning Toolbox™ function fitcecoc (Statistics and Machine
Learning Toolbox).

svm = fitcecoc(trainFeatures,TTrain);

Load the test data.

[XTest,TTest]= digitTest4DArrayData;

Extract the features from the same ReLU layer (the sixth layer) for test data and use the
returned features to train a support vector machine.

testFeatures = activations(net,XTest,6);

testPredictions = predict(svm,testFeatures);

Plot the confusion matrix. Convert the data into the format plotconfusion accepts

ttest = dummyvar(double(TTest))'; % dummyvar requires Statistics and Machine Learning Toolbox

tpredictions = dummyvar(double(testPredictions))';

plotconfusion(ttest,tpredictions);
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The overall accuracy for the test data using the trained network net is 97.8%.

Manually compute the overall accuracy.

accuracy = sum(TTest == testPredictions)/numel(TTest)

accuracy =
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    0.9778

• “Visualize Activations of a Convolutional Neural Network”

See Also

See Also
classify | predict | SeriesNetwork | trainNetwork

Topics
“Visualize Activations of a Convolutional Neural Network”

Introduced in R2016a
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classify

Class: SeriesNetwork

Classify data using a trained convolutional neural network

You can classify images or predict class scores using a trained convolutional neural
network (ConvNet, CNN) on either a CPU or GPU. Using a GPU requires the Parallel
Computing Toolbox and a CUDA-enabled NVIDIA GPU with compute capability 3.0 or
higher. Specify the hardware requirements using the ExecutionEnvironment name-
value pair argument.

Syntax

[Ypred,scores] = classify(net,X)

[Ypred,scores] = classify(net,X,Name,Value)

Description

[Ypred,scores] = classify(net,X) estimates the classes for the data in X using
the trained network, net.

[Ypred,scores] = classify(net,X,Name,Value) estimates the classes with the
additional option specified by the Name,Value pair argument.

Input Arguments

net — Trained network
SeriesNetwork object

Trained network, specified as a SeriesNetwork object, returned by the trainNetwork
function.

X — Input data
3-D array of a single image | 4-D array of images | ImageDatastore object | table
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Input data, specified as an array of a single image, a 4-D array of images, images stored
as an ImageDatastore, or images or image paths in a table.

• If X is a single image, then the dimensions correspond to the height, width, and
channels of the image.

• If X is an array of images, then the first three dimensions correspond to height,
width, and channels of an image, and the fourth dimension corresponds to the image
number.

• Images that are stored as an ImageDatastore object. For more information about
this data type, see ImageDatastore.

• A table, where the first column contains either image paths or images.

Data Types: single | double | table

Name-Value Pair Arguments

Specify optional comma-separated pair of Name,Value argument. Name is the argument
name and Value is the corresponding value. Name must appear inside single quotes ('
').

Example: 'MiniBatchSize','256' specifies the mini-batch size as 256.

'MiniBatchSize' — Size of mini-batches for prediction
128 (default) | integer number

Size of mini-batches for prediction, specified as an integer number. Larger mini-batch
sizes require more memory, but lead to faster predictions.
Example: 'MiniBatchSize',256

Data Types: single | double

'ExecutionEnvironment' — Hardware resource for classify
'auto' (default) | 'gpu' | 'cpu'

Hardware resource for classify to run the network, specified as the comma-separated
pair consisting of 'ExecutionEnvironment' and one of the following:

• 'auto' — Use a GPU if it is available, otherwise use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox

and a CUDA-enabled NVIDIA GPU with compute capability 3.0 or higher. If a
suitable GPU is not available, classify returns an error message.
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• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

Data Types: char

Output Arguments

Ypred — Class labels
n-by-1 categorical vector

Class labels, returned as an n-by-1 categorical vector, where n is the number of
observations.

scores — Class scores
n-by-k matrix

Class scores, returned as an n-by-k matrix, where n is the number of observations and k
is the number of classes.

Examples

Classify Images Using Trained ConvNet

Load the sample data.

[XTrain,TTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a
28-by-28-by-1-by-4940 array, where 28 is the height and 28 is the width of the images.
1 is the number of channels and 4940 is the number of synthetic images of handwritten
digits. TTrain is a categorical vector containing the labels for each observation.

Construct the convolutional neural network architecture.

layers = [imageInputLayer([28 28 1]);

          convolution2dLayer(5,20);

          reluLayer();

          maxPooling2dLayer(2,'Stride',2);
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          fullyConnectedLayer(10);

          softmaxLayer();

          classificationLayer()];

Set the options to default settings for the stochastic gradient descent with momentum.

options = trainingOptions('sgdm');

Train the network.

rng('default')

net = trainNetwork(XTrain,TTrain,layers,options);

Training on single CPU.

Initializing image normalization.

|=========================================================================================|

|     Epoch    |   Iteration  | Time Elapsed |  Mini-batch  |  Mini-batch  | Base Learning|

|              |              |  (seconds)   |     Loss     |   Accuracy   |     Rate     |

|=========================================================================================|

|            1 |            1 |         0.45 |       2.3026 |        7.81% |       0.0100 |

|            2 |           50 |        21.47 |       2.2735 |       33.59% |       0.0100 |

|            3 |          100 |        41.43 |       1.6613 |       48.44% |       0.0100 |

|            4 |          150 |        59.75 |       1.1803 |       64.06% |       0.0100 |

|            6 |          200 |        78.27 |       1.0499 |       64.06% |       0.0100 |

|            7 |          250 |        98.20 |       0.8391 |       76.56% |       0.0100 |

|            8 |          300 |       119.67 |       0.6981 |       77.34% |       0.0100 |

|            9 |          350 |       140.78 |       0.7084 |       77.34% |       0.0100 |

|           11 |          400 |       166.47 |       0.4902 |       87.50% |       0.0100 |

|           12 |          450 |       187.00 |       0.3839 |       91.41% |       0.0100 |

|           13 |          500 |       208.35 |       0.2986 |       92.19% |       0.0100 |

|           15 |          550 |       230.29 |       0.2583 |       93.75% |       0.0100 |

|           16 |          600 |       251.15 |       0.2009 |       97.66% |       0.0100 |

|           17 |          650 |       271.36 |       0.2642 |       92.97% |       0.0100 |

|           18 |          700 |       291.54 |       0.1448 |       97.66% |       0.0100 |

|           20 |          750 |       311.81 |       0.1314 |       96.88% |       0.0100 |

|           21 |          800 |       332.93 |       0.1232 |       97.66% |       0.0100 |

|           22 |          850 |       353.39 |       0.1009 |       98.44% |       0.0100 |

|           24 |          900 |       373.37 |       0.1051 |      100.00% |       0.0100 |

|           25 |          950 |       393.05 |       0.1483 |       97.66% |       0.0100 |

|           26 |         1000 |       412.93 |       0.0743 |       99.22% |       0.0100 |

|           27 |         1050 |       432.28 |       0.0603 |      100.00% |       0.0100 |

|           29 |         1100 |       452.59 |       0.0769 |       99.22% |       0.0100 |

|           30 |         1150 |       473.56 |       0.0524 |      100.00% |       0.0100 |

|           30 |         1170 |       481.60 |       0.0566 |      100.00% |       0.0100 |

|=========================================================================================|
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Run the trained network on a test set.

[XTest,TTest]= digitTest4DArrayData;

YTestPred = classify(net,XTest);

Display the first 10 images in the test data and compare to the classification from
classify.

[TTest(1:10,:) YTestPred(1:10,:)]

ans = 

  10×2 categorical array

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

     0      0 

The results from classify match the true digits for the first ten images.

Calculate the accuracy over all test data.

accuracy = sum(YTestPred == TTest)/numel(TTest)

accuracy =

    0.9770

Alternatives

You can compute the predicted scores from a trained network using the predict method.

You can also compute the activations from a network layer using the activations method.
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See Also

See Also
activations | predict

Introduced in R2016a
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predict
Class: SeriesNetwork

Predict responses using a trained convolutional neural network

You can predict class scores or numeric responses using a trained convolutional neural
network (ConvNet, CNN) on either a CPU or GPU. Using a GPU requires the Parallel
Computing Toolbox and a CUDA-enabled NVIDIA GPU with compute capability 3.0 or
higher. Specify the hardware requirements using the ExecutionEnvironment name-
value pair argument.

Syntax

YPred = predict(net,X)

YPred = predict(net,X,Name,Value)

Description

YPred = predict(net,X) predicts responses for data in X using the trained network
net.

YPred = predict(net,X,Name,Value) predicts responses with the additional option
specified by the Name,Value pair argument.

Input Arguments

net — Trained network
SeriesNetwork object

Trained network, specified as a SeriesNetwork object, returned by the trainNetwork
function.

X — Input data
3-D array of a single image | 4-D array of images | ImageDatastore object | table

Input data, specified as an array of a single image, a 4-D array of images, images stored
as an ImageDatastore, or images or image paths in a table.
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• If X is a single image, then the dimensions correspond to the height, width, and
channels of the image.

• If X is an array of images, then the first three dimensions correspond to height,
width, and channels of an image, and the fourth dimension corresponds to the image
number.

• Images that are stored as an ImageDatastore object. For more information about
this data type, see ImageDatastore.

• A table, where the first column contains either image paths or images.

Data Types: single | double | table

Name-Value Pair Arguments

Specify optional comma-separated pair of Name,Value argument. Name is the argument
name and Value is the corresponding value. Name must appear inside single quotes ('
').

Example: 'MiniBatchSize',256 specifies the mini-batch size as 256.

'MiniBatchSize' — Size of mini-batches for prediction
128 (default) | integer number

Size of mini-batches for prediction, specified as an integer number. Larger mini-batch
sizes require more memory, but lead to faster predictions.
Example: 'MiniBatchSize',256

Data Types: single | double

'ExecutionEnvironment' — Hardware resource for predict
'auto' (default) | 'gpu' | 'cpu'

Hardware resource for predict to run the network, specified as the comma-separated
pair consisting of 'ExecutionEnvironment' and one of the following:

• 'auto' — Use a GPU if it is available, otherwise use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox

and a CUDA-enabled NVIDIA GPU with compute capability 3.0 or higher. If a
suitable GPU is not available, predict returns an error message.

• 'cpu' — Use the CPU.
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Example: 'ExecutionEnvironment','cpu'

Data Types: char

Output Arguments

YPred — Predicted scores or responses
n-by-k matrix | h-by-w-by-c-by-n numeric array

Predicted scores, returned as one of the following:

• For a classification problem, Ypred is an n-by-k matrix, where n is the number of
observations and k is the number of classes.

• For a regression problem, the format of Ypred depends on the format of the responses
in the training data. Ypred can be an

• n-by-r numeric matrix, where n is the number of observations and r is the number
of responses

• h-by-w-by-c-by-n numeric array, where n is the number of observations and h-
by-w-by-c is the size of a single response

Examples

Predict Output Scores Using a Trained ConvNet

Load the sample data.

[XTrain,TTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a
28-by-28-by-1-by-4940 array, where 28 is the height and 28 is the width of the images.
1 is the number of channels and 4940 is the number of synthetic images of handwritten
digits. TTrain is a categorical vector containing the labels for each observation.

Construct the convolutional neural network architecture.

layers = [imageInputLayer([28 28 1]);

          convolution2dLayer(5,20);

          reluLayer();

          maxPooling2dLayer(2,'Stride',2);
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          fullyConnectedLayer(10);

          softmaxLayer();

          classificationLayer()];

Set the options to default settings for the stochastic gradient descent with momentum.

options = trainingOptions('sgdm');

Train the network.

rng(1)

net = trainNetwork(XTrain,TTrain,layers,options);

Training on single CPU.

Initializing image normalization.

|=========================================================================================|

|     Epoch    |   Iteration  | Time Elapsed |  Mini-batch  |  Mini-batch  | Base Learning|

|              |              |  (seconds)   |     Loss     |   Accuracy   |     Rate     |

|=========================================================================================|

|            1 |            1 |         0.46 |       2.3028 |       11.72% |       0.0100 |

|            2 |           50 |        22.28 |       2.2653 |       30.47% |       0.0100 |

|            3 |          100 |        43.78 |       1.5949 |       48.44% |       0.0100 |

|            4 |          150 |        65.84 |       1.2292 |       58.59% |       0.0100 |

|            6 |          200 |        88.89 |       1.0559 |       64.06% |       0.0100 |

|            7 |          250 |       109.26 |       1.0304 |       64.06% |       0.0100 |

|            8 |          300 |       130.33 |       0.7178 |       78.13% |       0.0100 |

|            9 |          350 |       151.08 |       0.6900 |       78.13% |       0.0100 |

|           11 |          400 |       170.00 |       0.5104 |       85.94% |       0.0100 |

|           12 |          450 |       188.27 |       0.4311 |       89.06% |       0.0100 |

|           13 |          500 |       205.94 |       0.2796 |       92.19% |       0.0100 |

|           15 |          550 |       226.17 |       0.2389 |       96.09% |       0.0100 |

|           16 |          600 |       244.30 |       0.2566 |       92.97% |       0.0100 |

|           17 |          650 |       262.95 |       0.1773 |       96.88% |       0.0100 |

|           18 |          700 |       286.71 |       0.1260 |       99.22% |       0.0100 |

|           20 |          750 |       308.38 |       0.1297 |      100.00% |       0.0100 |

|           21 |          800 |       330.32 |       0.1080 |       97.66% |       0.0100 |

|           22 |          850 |       352.67 |       0.1176 |       98.44% |       0.0100 |

|           24 |          900 |       374.93 |       0.0762 |      100.00% |       0.0100 |

|           25 |          950 |       396.56 |       0.0774 |      100.00% |       0.0100 |

|           26 |         1000 |       418.47 |       0.0877 |       99.22% |       0.0100 |

|           27 |         1050 |       440.01 |       0.0645 |       99.22% |       0.0100 |

|           29 |         1100 |       461.06 |       0.0624 |      100.00% |       0.0100 |

|           30 |         1150 |       482.18 |       0.0488 |      100.00% |       0.0100 |

|           30 |         1170 |       490.42 |       0.0816 |       99.22% |       0.0100 |

|=========================================================================================|
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Run the trained network on a test set and predict the scores.

[XTest,TTest]= digitTest4DArrayData;

YTestPred = predict(net,XTest);

predict, by default, uses a CUDA-enabled GPU with compute capability
3.0, when available. You can also choose to run predict on a CPU using the
'ExecutionEnvironment','cpu' name-value pair argument.

Display the first 10 images in the test data and compare to the predictions from
predict.

TTest(1:10,:)

ans = 

  10×1 categorical array

     0 

     0 

     0 

     0 

     0 

     0 

     0 

     0 

     0 

     0 

YTestPred(1:10,:)

ans =

  10×10 single matrix

  Columns 1 through 7

    0.9993    0.0000    0.0002    0.0003    0.0000    0.0000    0.0001

    0.8579    0.0000    0.0551    0.0003    0.0000    0.0002    0.0139

    0.9999    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000

    0.9558    0.0000    0.0000    0.0000    0.0000    0.0000    0.0060

    0.9616    0.0000    0.0041    0.0001    0.0000    0.0000    0.0004
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    0.9915    0.0000    0.0005    0.0000    0.0000    0.0000    0.0016

    0.9733    0.0000    0.0003    0.0000    0.0000    0.0000    0.0247

    1.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000

    0.9126    0.0000    0.0016    0.0002    0.0003    0.0007    0.0001

    0.9409    0.0000    0.0102    0.0020    0.0001    0.0001    0.0278

  Columns 8 through 10

    0.0000    0.0000    0.0002

    0.0001    0.0035    0.0690

    0.0000    0.0000    0.0001

    0.0000    0.0010    0.0372

    0.0002    0.0335    0.0002

    0.0000    0.0044    0.0020

    0.0000    0.0016    0.0001

    0.0000    0.0000    0.0000

    0.0000    0.0012    0.0833

    0.0000    0.0143    0.0047

TTest contains the digits corresponding to the images in XTest. The columns of
YTestPred contain predict’s estimation of a probability that an image contains a
particular digit. That is, the first column contains the probability estimate that the given
image is digit 0, the second column contains the probability estimate that the image is
digit 1, the third column contains the probability estimate that the image is digit 2, and
so on. You can see that predict’s estimation of probabilities for the correct digits are
almost 1 and the probability for any other digit is almost 0. predict correctly estimates
the first 10 observations as digit 0.

Algorithms

If the image data contains NaNs, predict propagates them through the network. If the
network has ReLU layers, these layers ignore NaNs. However, if the network does not
have a ReLU layer, then predict returns NaNs as predictions.

Alternatives

You can compute the predicted scores and the predicted classes from a trained network
using the classify method.
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You can also compute the activations from a network layer using the activations method.

See Also

See Also
activations | classify

Introduced in R2016a
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deepDreamImage
Visualize network features using deep dream

Syntax

I = deepDreamImage(net,layer,channels)

I = deepDreamImage( ___ ,Name,Value)

Description

I = deepDreamImage(net,layer,channels) returns an array of images that
strongly activate the channels channels within the network net of the layer with
numeric index or name given by layer. These images highlight the features learned by a
network.

I = deepDreamImage( ___ ,Name,Value) returns an image with additional options
specified by one or more Name,Value pair arguments using any of the previous syntaxes.

Examples

Visualize Convolutional Neural Network Features

Create a simple convolutional neural network and visualize the learned features using
deepDreamImage.

Load sample data.

[XTrain,TTrain] = digitTrain4DArrayData;

Construct a simple network to classify the digit image data.

layers = [ ...

    imageInputLayer([28 28 1])

    convolution2dLayer(5,20)

    reluLayer

    maxPooling2dLayer(2,'Stride',2)

    fullyConnectedLayer(10)

    softmaxLayer
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    classificationLayer];

Create training options.

options = trainingOptions('sgdm');

Train the network.

net = trainNetwork(XTrain,TTrain,layers,options);

Training on single CPU.

Initializing image normalization.

|=========================================================================================|

|     Epoch    |   Iteration  | Time Elapsed |  Mini-batch  |  Mini-batch  | Base Learning|

|              |              |  (seconds)   |     Loss     |   Accuracy   |     Rate     |

|=========================================================================================|

|            1 |            1 |         0.71 |       2.3026 |        7.81% |       0.0100 |

|            2 |           50 |        22.65 |       2.2735 |       33.59% |       0.0100 |

|            3 |          100 |        45.99 |       1.6613 |       48.44% |       0.0100 |

|            4 |          150 |        69.33 |       1.1803 |       64.06% |       0.0100 |

|            6 |          200 |        92.53 |       1.0499 |       64.06% |       0.0100 |

|            7 |          250 |       114.83 |       0.8391 |       76.56% |       0.0100 |

|            8 |          300 |       135.42 |       0.6981 |       77.34% |       0.0100 |

|            9 |          350 |       156.16 |       0.7084 |       77.34% |       0.0100 |

|           11 |          400 |       177.40 |       0.4902 |       87.50% |       0.0100 |

|           12 |          450 |       200.70 |       0.3839 |       91.41% |       0.0100 |

|           13 |          500 |       224.17 |       0.2986 |       92.19% |       0.0100 |

|           15 |          550 |       247.83 |       0.2583 |       93.75% |       0.0100 |

|           16 |          600 |       272.60 |       0.2009 |       97.66% |       0.0100 |

|           17 |          650 |       296.90 |       0.2642 |       92.97% |       0.0100 |

|           18 |          700 |       321.41 |       0.1448 |       97.66% |       0.0100 |

|           20 |          750 |       345.70 |       0.1314 |       96.88% |       0.0100 |

|           21 |          800 |       370.33 |       0.1232 |       97.66% |       0.0100 |

|           22 |          850 |       395.03 |       0.1009 |       98.44% |       0.0100 |

|           24 |          900 |       419.23 |       0.1051 |      100.00% |       0.0100 |

|           25 |          950 |       443.50 |       0.1483 |       97.66% |       0.0100 |

|           26 |         1000 |       468.20 |       0.0743 |       99.22% |       0.0100 |

|           27 |         1050 |       493.03 |       0.0603 |      100.00% |       0.0100 |

|           29 |         1100 |       517.05 |       0.0769 |       99.22% |       0.0100 |

|           30 |         1150 |       540.32 |       0.0524 |      100.00% |       0.0100 |

|           30 |         1170 |       549.11 |       0.0566 |      100.00% |       0.0100 |

|=========================================================================================|

To produce images that resemble a given digit the most closely, specify the final fully
connected layer. View the network layers.
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net.Layers

ans = 

  7x1 Layer array with layers:

     1   'imageinput'    Image Input             28x28x1 images with 'zerocenter' normalization

     2   'conv'          Convolution             20 5x5x1 convolutions with stride [1  1] and padding [0  0]

     3   'relu'          ReLU                    ReLU

     4   'maxpool'       Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]

     5   'fc'            Fully Connected         10 fully connected layer

     6   'softmax'       Softmax                 softmax

     7   'classoutput'   Classification Output   crossentropyex with '0', '1', and 8 other classes

Specify the last fully connected layer.

layer = 'fc';

Specify first channel to visualize digit 0.

channels = 1;

Generate and display image.

I = deepDreamImage(net,layer,channels,'Verbose',false);

imshow(I)

• “Deep Learning in MATLAB”
• “Pretrained Convolutional Neural Networks”
• “Deep Dream Images Using AlexNet”
• “Visualize Features of a Convolutional Neural Network”
• “Visualize Activations of a Convolutional Neural Network”
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Input Arguments

net — Trained network
SeriesNetwork object

Trained network, specified as a SeriesNetwork object, returned by the trainNetwork
function.

layer — Layer index or name
numeric index | character vector

Layer to visualize, specified as a positive integer scalar or character vector. To visualize
classification layer features, select the last fully connected layer before the classification
layer.

Tip: Selecting ReLU or dropout layers for visualization may not produce useful images
because of the effect that these layers have on the network gradients.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char

channels — Channel index
numeric index | vector of numeric indices

Queried channels, specified as scalar or vector of channel indices. If channels is a
vector, the layer activations for each channel are optimized independently. The possible
choices for channels depend on the selected layer. For convolutional layers, the
NumFilters property specifies the number of output channels. For fully connected
layers, the OutputSize property specifies the number of output channels.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example:
deepDreamImage(net,layer,channels,'NumItetations',100,'ExecutionEnvironment','gpu')

generates images using 100 iterations per pyramid level and uses the GPU.

'InitialImage' — Image to initialize Deep Dream
array

Image to initialize Deep Dream. Use this syntax to see how an image is modified to
maximize network layer activations. The minimum height and width of the initial image
depend on all the layers up to and including the selected layer:

• For layers towards the end of the network, the initial image must be at least the same
height and width as the image input layer.

• For layers towards the beginning of the network, the height and width of the initial
image can be smaller than the image input layer. However, it must be large enough to
produce a scalar output at the selected layer.

• The number of channels of the initial image must match the number of channels in
the image input layer of the network.

If you do not specify an initial image, the software uses a random image with pixels
drawn from a standard normal distribution. See also 'PyramidLevels'.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

'PyramidLevels' — Number of pyramid levels
3 (default) | positive integer

Number of multi-resolution image pyramid levels to use to generate the output image,
specified as a positive integer. Increase the number of pyramid levels to produce larger
output images at the expense of additional computation. To produce an image of the
same size as the initial image, set the number of levels to 1.

Example: 'PyramidLevels',3

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

'PyramidScale' — Scale between pyramid levels
1.4 (default) | scalar with value > 1

Scale between each pyramid level, specified as a scalar with value > 1. Reduce the
pyramid scale to incorporate fine grain details into the output image. Adjusting the
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pyramid scale can help generate more informative images for layers at the beginning of
the network.
Example: 'PyramidScale',1.4

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

'NumIterations' — Number of iterations per pyramid level
10 (default) | positive integer

Number of iterations per pyramid level, specified as a positive integer. Increase the
number of iterations to produce more detailed images at the expense of additional
computation.
Example: 'NumIterations',10

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

'OutputScaling' — Type of scaling to apply to output
'linear' (default) | 'none'

Type of scaling to apply to output image, specified as the comma-separated pair
consisting of 'OutputScaling' and one of the following:

Value Description

'linear' Scale output pixel values in the interval
[0,1]. The output image corresponding to
each layer channel, I(:,:,:,channel), is
scaled independently.

'none' Disable output scaling.

Example: 'OutputScaling','linear'

Data Types: char

'Verbose' — Indicator to display progress information
1 (default) | 0

Indicator to display progress information in the command window, specified as the
comma-separated pair consisting of 'Verbose' and either 1 (true) or 0 (false). The
displayed information includes the pyramid level, iteration, and the activation strength.
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Example: 'Verbose',0

Data Types: logical

'ExecutionEnvironment' — Execution environment for the function
'auto' (default) | 'gpu' | 'cpu'

Execution environment for the function, specified as the comma-separated pair consisting
of 'ExecutionEnvironment' and one of the following values.

Value Description

'auto' Use a GPU if available, otherwise use the
CPU.

'gpu' Use the GPU. To use a GPU, you must
have Parallel Computing Toolbox, and a
CUDA-enabled NVIDIA GPU with compute
capability 3.0 or higher. If a suitable GPU
is not available, the software returns an
error.

'cpu' Use the CPU.

Example: 'ExecutionEnvironment','auto'

Data Types: char

Output Arguments

I — Output image
array

Output image, specified by a sequence of grayscale or truecolor (RGB) images stored in a
4–D array. Images are concatenated along the fourth dimension of I such that the image
that maximizes the output of channels(k) is I(:,:,:,k). You can display the output
image using imshow.

Algorithms

This function implements a version of deep dream that uses a multi-resolution image
pyramid and Laplacian Pyramid Gradient Normalization to generate high-resolution
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images. For more information on Laplacian Pyramid Gradient Normalization, see this
blog post: DeepDreaming with TensorFlow.

References

[1] DeepDreaming with TensorFlow. https://github.com/tensorflow/tensorflow/blob/
master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb

See Also

See Also
activations | alexnet | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Convolutional Neural Networks”
“Deep Dream Images Using AlexNet”
“Visualize Features of a Convolutional Neural Network”
“Visualize Activations of a Convolutional Neural Network”

Introduced in R2017a
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regressionLayer
Create a regression output layer

Syntax

routputlayer = regressionLayer()

routputlayer = regressionLayer('Name',Name)

Description

routputlayer = regressionLayer() returns a regression output layer for a
neural network as a RegressionOutputLayer object. For regression problems, you must
include a fully connected layer followed by a regression layer at the end of the network.
For information on concatenating layers to construct convolutional neural network
architecture, see Layer. Predict responses using a trained network using predict.

routputlayer = regressionLayer('Name',Name) returns a regression layer with
the name specified by Name.

Examples

Create Regression Output Layer

Create a regression output layer with the name 'routput'.

routputlayer = regressionLayer('Name','routput')

routputlayer = 

  RegressionOutputLayer with properties:

             Name: 'routput'

    ResponseNames: {}

   Hyperparameters

     LossFunction: 'mean-squared-error'
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The default loss function for regression is mean-squared-error.

• “Deep Learning in MATLAB”
• “Train a Convolutional Neural Network for Regression”

Input Arguments

Name — Layer name
'' (default) | character vector

Layer name, specified as the comma-separated pair consisting of 'Name' and a character
vector. If you do not specify a name, then the software initially specifies the default value
'', and automatically assigns the name 'regressionoutputlayer' at training time.

Example: 'Name','routput'

Data Types: char

Output Arguments

routputlayer — Regression output layer
RegressionOutputLayer

Regression output layer, returned as a RegressionOutputLayer object.

For information on concatenating layers to construct convolutional neural network
architecture, see Layer.

See Also

See Also
RegressionOutputLayer | classificationLayer | fullyConnectedLayer

Topics
“Deep Learning in MATLAB”
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“Train a Convolutional Neural Network for Regression”

Introduced in R2017a
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RegressionOutputLayer class

Regression output layer

Description

RegressionOutputLayer is a class containing the loss function, and name of the layer.
To solve a regression problem, you must include a fully connected layer followed by a
regression layer at the end of the network.

Construction

routputlayer = regressionLayer() returns a regression output layer for a neural
network as a RegressionOutputLayer object.

routputlayer = regressionLayer('Name',Name) returns a regression layer with
the name specified by Name.

Input Arguments

Name — Layer name
'' (default) | character vector

Layer name, specified as the comma-separated pair consisting of Name and a character
vector. If you do not specify a name, the software specifies the default value '', and at
training time the software specifies the name 'regressionoutputlayer'.

Example: 'Name','routput'

Data Types: char

Properties

LossFunction — Loss function for training
'mean-squared-error' (default)
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Loss function the software uses for training, specified by a character vector. The only
possible value is 'mean-squared-error'.

Data Types: char

Name — Layer name
'' (default) | character vector

Layer name, specified by a character vector. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char

Response Names — Names of responses
{} (default) | cell array

Names of responses, specified by a cell array. If you do not specify the response names,
the software initially specifies the default value {}, and automatically assigns the
response names at training time.
Data Types: cell

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB)
in the MATLAB documentation.

Examples

Create Regression Output Layer

Create a regression output layer with the name 'routput'.

routputlayer = regressionLayer('Name','routput')

routputlayer = 

  RegressionOutputLayer with properties:

             Name: 'routput'
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    ResponseNames: {}

   Hyperparameters

     LossFunction: 'mean-squared-error'

The default loss function for regression is mean-squared-error.

• “Deep Learning in MATLAB”
• “Train a Convolutional Neural Network for Regression”

See Also

See Also
classificationLayer | ClassificationOutputLayer | regressionLayer

Topics
“Deep Learning in MATLAB”
“Train a Convolutional Neural Network for Regression”
Class Attributes (MATLAB)
Property Attributes (MATLAB)
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alexnet
Pretrained AlexNet convolutional neural network

Syntax

net = alexnet

Description

net = alexnet returns a pretrained AlexNet model. This model is trained on a subset
of the ImageNet database [1], which is used in ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [2]. The model is trained on more than a million images and can
classify images into 1000 object categories. For example, keyboard, mouse, pencil, and
many animals. As a result, the model has learned rich feature representations for a wide
range of images.

This function requires Neural Network Toolbox Model for AlexNet Network support
package. If this support package is not installed, the function provides a download link.
Alternatively, see Neural Network Toolbox Model for AlexNet Network.

Examples

Download AlexNet Support Package

Download and install Neural Network Toolbox Model for AlexNet Network support
package.

Type alexnet at the command line.

alexnet

If Neural Network Toolbox Model for AlexNet Network support package is not installed,
then the function provides a link to the required support package in the Add-On
Explorer. To install the support package, click the link, and then click Install. Check
that the installation is successful by typing alexnet at the command line.
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alexnet

ans = 

  SeriesNetwork with properties:

    Layers: [25×1 nnet.cnn.layer.Layer]

If the required support package is installed, then the function returns a SeriesNetwork
object.

Load Pretrained AlexNet Convolutional Neural Network

Load a pretrained AlexNet convolutional neural network and examine the layers and
classes.

Load the pretrained AlexNet network using alexnet. The output net is a
SeriesNetwork object.

net = alexnet

net = 

  SeriesNetwork with properties:

    Layers: [25×1 nnet.cnn.layer.Layer]

Using the Layers property, view the network architecture. The network comprises of
25 layers. There are 8 layers with learnable weights: 5 convolutional layers, and 3 fully
connected layers.

net.Layers

ans = 

  25x1 Layer array with layers:

     1   'data'     Image Input                   227x227x3 images with 'zerocenter' normalization

     2   'conv1'    Convolution                   96 11x11x3 convolutions with stride [4  4] and padding [0  0]

     3   'relu1'    ReLU                          ReLU
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     4   'norm1'    Cross Channel Normalization   cross channel normalization with 5 channels per element

     5   'pool1'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0]

     6   'conv2'    Convolution                   256 5x5x48 convolutions with stride [1  1] and padding [2  2]

     7   'relu2'    ReLU                          ReLU

     8   'norm2'    Cross Channel Normalization   cross channel normalization with 5 channels per element

     9   'pool2'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0]

    10   'conv3'    Convolution                   384 3x3x256 convolutions with stride [1  1] and padding [1  1]

    11   'relu3'    ReLU                          ReLU

    12   'conv4'    Convolution                   384 3x3x192 convolutions with stride [1  1] and padding [1  1]

    13   'relu4'    ReLU                          ReLU

    14   'conv5'    Convolution                   256 3x3x192 convolutions with stride [1  1] and padding [1  1]

    15   'relu5'    ReLU                          ReLU

    16   'pool5'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0]

    17   'fc6'      Fully Connected               4096 fully connected layer

    18   'relu6'    ReLU                          ReLU

    19   'drop6'    Dropout                       50% dropout

    20   'fc7'      Fully Connected               4096 fully connected layer

    21   'relu7'    ReLU                          ReLU

    22   'drop7'    Dropout                       50% dropout

    23   'fc8'      Fully Connected               1000 fully connected layer

    24   'prob'     Softmax                       softmax

    25   'output'   Classification Output         crossentropyex with 'tench', 'goldfish', and 998 other classes

You can view the names of the classes learned by the network by viewing the
ClassNames property of the classification output layer (the final layer). View the first 10
classes by selecting the first 10 elements.

net.Layers(end).ClassNames(1:10)

ans =

  1×10 cell array

  Columns 1 through 4

    'tench'    'goldfish'    'great white shark'    'tiger shark'

  Columns 5 through 9

    'hammerhead'    'electric ray'    'stingray'    'cock'    'hen'

  Column 10

    'ostrich'
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Classify an Image Using AlexNet

Read, resize, and classify an image using AlexNet. First, load a pretrained AlexNet
model.

net = alexnet;

Read the image using imread.

I = imread('peppers.png');

figure

imshow(I)
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The pretrained model requires the image size to be the same as the input size of the
network. Determine the input size of the network using the InputSize property of the
first layer of the network.

sz = net.Layers(1).InputSize

sz =

   227   227     3

Crop the image to the input size of the network. Alternatively, you can resize the image
using imresize (Image Processing Toolbox™).

I = I(1:sz(1),1:sz(2),1:sz(3));

figure

imshow(I)

Classify the image using classify.
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label = classify(net,I)

label = 

  categorical

     bell pepper 

Show the image and classification result together.

figure

imshow(I)

title(char(label))

Feature Extraction Using AlexNet

Extract learned features from a pretrained network, and use those features to train a
classifier. Feature extraction is the easiest and fastest way use the representational
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power of pretrained deep networks. For example, you can train a support vector machine
(SVM) using fitcecoc (Statistics and Machine Learning Toolbox™) on the extracted
features.

Load a pretrained AlexNet network.

net = alexnet;

Load the sample images. merchImagesTrain and merchImagesTest are
ImageDatastore objects.

[merchImagesTrain,merchImagesTest] = merchData;

In the sample data, there are 60 training images and 15 test images. Display 20 sample
images.

figure

for i = 1:20

    subplot(4,5,i)

    I = readimage(merchImagesTrain,i);

    imshow(I)

    drawnow

end
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If the training images differ in size to the image input layer, then you must resize or
crop the image data. The images in merchImages are the same size as the input size of
AlexNet, so you do not need to resize or crop the new image data.

Get the feature representations of the training and test images. Use activations on
the last fully connected layer ('fc7') with the image data.

layer = 'fc7';

trainingFeatures = activations(net,merchImagesTrain,layer);

testFeatures = activations(net,merchImagesTest,layer);

Extract the class labels from the training and test data.

trainingLabels = merchImagesTrain.Labels;
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testLabels = merchImagesTest.Labels;

Fit a multiclass support vector machine (SVM) using fitcecoc (Statistics and Machine
Learning Toolbox).

classifier = fitcecoc(trainingFeatures,trainingLabels);

Classify the test images using predict.

predictedLabels = predict(classifier,testFeatures);

Display four sample test images with their predicted labels.

idx = [1 4 7 10];

figure

for i = 1:numel(idx)

    subplot(2,2,i)

    I = readimage(merchImagesTest,idx(i));

    label = predictedLabels(idx(i));

    imshow(I)

    title(char(label))

    drawnow

end
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Calculate the classification accuracy.

accuracy = sum(predictedLabels==testLabels)/numel(predictedLabels)

accuracy =

    0.9333
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This example SVM has high accuracy. If the accuracy is not high enough using feature
extraction, the try transfer learning instead.

Transfer Learning Using AlexNet

Fine-tune a pretrained convolutional neural network to learn the features on a new
collection of images.

Transfer learning is commonly used in deep learning applications. You can take a
pretrained network and use it as a starting point to learn a new task. Fine-tuning a
network with transfer learning is much faster and easier than training from scratch. You
can quickly transfer learning to a new task using a smaller number of training images.

Load the sample images as ImageDatastore objects.

[merchImagesTrain,merchImagesTest] = merchData;

In the sample data, there are 60 training images and 15 test images. Display 20 sample
images.

figure

for i = 1:20

    subplot(4,5,i)

    I = readimage(merchImagesTrain,i);

    imshow(I)

    drawnow

end
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Load a pretrained AlexNet network.

net = alexnet;

The last three layers of the pretrained network net are configured for 1000 classes.
These three layers must be fine-tuned for the new classification problem. Extract all the
layers except the last three from the pretrained network, net.

layersTransfer = net.Layers(1:end-3);

Transfer the layers to the new task by replacing the last three layers with a fully
connected layer, a softmax layer, and a classification output layer. Specify the options
of the new fully connected layer according to the new data. Set the fully connected layer
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to be of the same size as the number of classes in the new data. To speed up training,
also increase 'WeightLearnRateFactor' and 'BiasLearnRateFactor' values in the
fully connected layer.

Determine the number of classes from the training data.

numClasses = numel(categories(merchImagesTrain.Labels))

numClasses =

     5

Create the layer array by combining the transferred layers with the new layers.

layers = [...

    layersTransfer

    fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20)

    softmaxLayer

    classificationLayer];

If the training images differ in size from the image input layer, then you must resize or
crop the image data. The images in merchImages are the same size as the input size of
AlexNet, so you do not need to resize or crop the new image data.

Create the training options. For transfer learning, you want to keep the features
from the early layers of the pretrained network (the transferred layer weights). Set
'InitialLearnRate' to a low value. This low initial learn rate slows down learning
on the transferred layers. In the previous step, you set the learn rate factors for
the fully connected layer higher to speed up learning on the new final layers. This
combination results in fast learning only on the new layers, while keeping the other
layers fixed. When performing transfer learning, you do not need to train for as many
epochs. To speed up training, you can reduce the value of the 'MaxEpochs' name-
value pair argument in the call to trainingOptions. To reduce memory usage, reduce
'MiniBatchSize'.

options = trainingOptions('sgdm',...

    'MiniBatchSize',5,...

    'MaxEpochs',10,...

    'InitialLearnRate',0.0001);

Fine-tune the network using trainNetwork on the new layer array.
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netTransfer = trainNetwork(merchImagesTrain,layers,options);

Training on single GPU.

Initializing image normalization.

|=========================================================================================|

|     Epoch    |   Iteration  | Time Elapsed |  Mini-batch  |  Mini-batch  | Base Learning|

|              |              |  (seconds)   |     Loss     |   Accuracy   |     Rate     |

|=========================================================================================|

|            1 |            1 |         0.55 |       2.4120 |       20.00% |       0.0001 |

|            5 |           50 |        18.28 |       0.0002 |      100.00% |       0.0001 |

|            9 |          100 |        34.82 |      -0.0000 |      100.00% |       0.0001 |

|           10 |          120 |        41.36 |       0.0001 |      100.00% |       0.0001 |

|=========================================================================================|

Classify the test images using classify.

predictedLabels = classify(netTransfer,merchImagesTest);

Display four sample test images with their predicted labels.

idx = [1 4 7 10];

figure

for i = 1:numel(idx)

    subplot(2,2,i)

    I = readimage(merchImagesTest,idx(i));

    label = predictedLabels(idx(i));

    imshow(I)

    title(char(label))

    drawnow

end
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Calculate the classification accuracy.

testLabels = merchImagesTest.Labels;

accuracy = sum(predictedLabels==testLabels)/numel(predictedLabels)

accuracy =

    0.8667
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This example has high accuracy. If the accuracy is not high enough using transfer
learning, try feature extraction instead.

• “Deep Learning in MATLAB”
• “Pretrained Convolutional Neural Networks”
• “Transfer Learning and Fine-Tuning of Convolutional Neural Networks”
• “Deep Dream Images Using AlexNet”
• “Visualize Features of a Convolutional Neural Network”
• “Visualize Activations of a Convolutional Neural Network”

Output Arguments

net — Pretrained AlexNet convolutional neural network
SeriesNetwork object

Pretrained AlexNet convolutional neural network returned as a SeriesNetwork object.

References

[1] ImageNet. http://www.image-net.org

[2] Russakovsky, O., Deng, J., Su, H., et al. “ImageNet Large Scale Visual Recognition
Challenge.” International Journal of Computer Vision (IJCV). Vol 115, Issue 3,
2015, pp. 211–252

[3] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification
with Deep Convolutional Neural Networks." Advances in neural information
processing systems. 2012.

[4] BVLC AlexNet Model. https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

See Also

See Also
deepDreamImage | importCaffeLayers | importCaffeNetwork | vgg16 | vgg19
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Topics
“Deep Learning in MATLAB”
“Pretrained Convolutional Neural Networks”
“Transfer Learning and Fine-Tuning of Convolutional Neural Networks”
“Deep Dream Images Using AlexNet”
“Visualize Features of a Convolutional Neural Network”
“Visualize Activations of a Convolutional Neural Network”

Introduced in R2017a
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vgg16
Pretrained VGG-16 convolutional neural network

Syntax

net = vgg16

Description

net = vgg16 returns a pretrained VGG-16 model. This model is trained on a subset
of the ImageNet database [1], which is used in the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) [2]. VGG-16 is trained on more than a million
images and can classify images into 1000 object categories. For example, keyboard,
mouse, pencil, and many animals. As a result, the model has learned rich feature
representations for a wide range of images.

This function requires Neural Network Toolbox Model for VGG-16 Network support
package. If this support package is not installed, then the function provides a download
link.

Examples

Download VGG-16 Support Package

Download and install Neural Network Toolbox Model for VGG-16 Network support
package.

Type vgg16 at the command line.

vgg16

If Neural Network Toolbox Model for VGG-16 Network support package is not installed,
then the function provides a link to the required support package in the Add-On
Explorer. To install the support package, click the link, and then click Install. Check
that the installation is successful by typing vgg16 at the command line.
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vgg16

ans = 

  SeriesNetwork with properties:

    Layers: [41×1 nnet.cnn.layer.Layer]

Load Pretrained VGG-16 Convolutional Neural Network

Load a pretrained VGG-16 convolutional neural network and examine the layers and
classes.

Use vgg16 to load the pretrained VGG-16 network. The output net is a SeriesNetwork
object.

net = vgg16

net = 

  SeriesNetwork with properties:

    Layers: [41×1 nnet.cnn.layer.Layer]

View the network architecture using the Layers property. The network has 41 layers.
There are 16 layers with learnable weights: 13 convolutional layers, and 3 fully
connected layers.

net.Layers

ans = 

  41x1 Layer array with layers:

     1   'input'     Image Input             224x224x3 images with 'zerocenter' normalization

     2   'conv1_1'   Convolution             64 3x3x3 convolutions with stride [1  1] and padding [1  1]

     3   'relu1_1'   ReLU                    ReLU

     4   'conv1_2'   Convolution             64 3x3x64 convolutions with stride [1  1] and padding [1  1]

     5   'relu1_2'   ReLU                    ReLU

     6   'pool1'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]

     7   'conv2_1'   Convolution             128 3x3x64 convolutions with stride [1  1] and padding [1  1]
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     8   'relu2_1'   ReLU                    ReLU

     9   'conv2_2'   Convolution             128 3x3x128 convolutions with stride [1  1] and padding [1  1]

    10   'relu2_2'   ReLU                    ReLU

    11   'pool2'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]

    12   'conv3_1'   Convolution             256 3x3x128 convolutions with stride [1  1] and padding [1  1]

    13   'relu3_1'   ReLU                    ReLU

    14   'conv3_2'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1]

    15   'relu3_2'   ReLU                    ReLU

    16   'conv3_3'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1]

    17   'relu3_3'   ReLU                    ReLU

    18   'pool3'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]

    19   'conv4_1'   Convolution             512 3x3x256 convolutions with stride [1  1] and padding [1  1]

    20   'relu4_1'   ReLU                    ReLU

    21   'conv4_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1]

    22   'relu4_2'   ReLU                    ReLU

    23   'conv4_3'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1]

    24   'relu4_3'   ReLU                    ReLU

    25   'pool4'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]

    26   'conv5_1'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1]

    27   'relu5_1'   ReLU                    ReLU

    28   'conv5_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1]

    29   'relu5_2'   ReLU                    ReLU

    30   'conv5_3'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1]

    31   'relu5_3'   ReLU                    ReLU

    32   'pool5'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]

    33   'fc6'       Fully Connected         4096 fully connected layer

    34   'relu6'     ReLU                    ReLU

    35   'drop6'     Dropout                 50% dropout

    36   'fc7'       Fully Connected         4096 fully connected layer

    37   'relu7'     ReLU                    ReLU

    38   'drop7'     Dropout                 50% dropout

    39   'fc8'       Fully Connected         1000 fully connected layer

    40   'prob'      Softmax                 softmax

    41   'output'    Classification Output   crossentropyex with 'tench', 'goldfish', and 998 other classes

To view the names of the classes learned by the network, you can view the ClassNames
property of the classification output layer (the final layer). View the first 10 classes by
specifying the first 10 elements.

net.Layers(end).ClassNames(1:10)

ans =

  10×1 cell array
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    'tench'

    'goldfish'

    'great white shark'

    'tiger shark'

    'hammerhead'

    'electric ray'

    'stingray'

    'cock'

    'hen'

    'ostrich'

• “Deep Learning in MATLAB”
• “Pretrained Convolutional Neural Networks”
• “Transfer Learning and Fine-Tuning of Convolutional Neural Networks”
• “Visualize Activations of a Convolutional Neural Network”

Output Arguments

net — Pretrained VGG-16 convolutional neural network
SeriesNetwork object

Pretrained VGG-16 convolutional neural network returned as a SeriesNetwork object.

References

[1] ImageNet. http://www.image-net.org

[2] Russakovsky, O., Deng, J., Su, H., et al. “ImageNet Large Scale Visual Recognition
Challenge.” International Journal of Computer Vision (IJCV). Vol 115, Issue 3,
2015, pp. 211–252

[3] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for
large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

[4] Very Deep Convolutional Networks for Large-Scale Visual Recognition http://
www.robots.ox.ac.uk/~vgg/research/very_deep/
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See Also

See Also
alexnet | importCaffeLayers | importCaffeNetwork | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Convolutional Neural Networks”
“Transfer Learning and Fine-Tuning of Convolutional Neural Networks”
“Visualize Activations of a Convolutional Neural Network”

Introduced in R2017a
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vgg19
Pretrained VGG-19 convolutional neural network

Syntax

net = vgg19

Description

net = vgg19 returns a pretrained VGG-19 model. This model is trained on a subset
of the ImageNet database [1], which is used in the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) [2]. VGG-19 is trained on more than a million
images and can classify images into 1000 object categories. For example, keyboard,
mouse, pencil, and many animals. As a result, the model has learned rich feature
representations for a wide range of images.

This function requires Neural Network Toolbox Model for VGG-19 Network support
package. If this support package is not installed, then the function provides a download
link.

Examples

Download VGG-19 Support Package

This example shows how to download and install Neural Network Toolbox Model for
VGG-19 Network support package.

Type vgg19 at the command line.

vgg19

If Neural Network Toolbox Model for VGG-19 Network support package is not installed,
then the function provides a link to the required support package in the Add-On
Explorer. To install the support package, click the link, and then click Install. Check
that the installation is successful by typing vgg19 at the command line.

vgg19
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ans = 

  SeriesNetwork with properties:

    Layers: [47×1 nnet.cnn.layer.Layer]

Load Pretrained VGG-19 Convolutional Neural Network

Load a pretrained VGG-19 convolutional neural network and examine the layers and
classes.

Use vgg19 to load a pretrained VGG-19 network. The output net is a SeriesNetwork
object.

net = vgg19

net = 

  SeriesNetwork with properties:

    Layers: [47×1 nnet.cnn.layer.Layer]

View the network architecture using the Layers property. The network has 47 layers.
There are 19 layers with learnable weights: 16 convolutional layers, and 3 fully
connected layers.

net.Layers

ans = 

  47x1 Layer array with layers:

     1   'input'     Image Input             224x224x3 images with 'zerocenter' normalization

     2   'conv1_1'   Convolution             64 3x3x3 convolutions with stride [1  1] and padding [1  1]

     3   'relu1_1'   ReLU                    ReLU

     4   'conv1_2'   Convolution             64 3x3x64 convolutions with stride [1  1] and padding [1  1]

     5   'relu1_2'   ReLU                    ReLU

     6   'pool1'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]

     7   'conv2_1'   Convolution             128 3x3x64 convolutions with stride [1  1] and padding [1  1]

     8   'relu2_1'   ReLU                    ReLU

     9   'conv2_2'   Convolution             128 3x3x128 convolutions with stride [1  1] and padding [1  1]

    10   'relu2_2'   ReLU                    ReLU
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    11   'pool2'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]

    12   'conv3_1'   Convolution             256 3x3x128 convolutions with stride [1  1] and padding [1  1]

    13   'relu3_1'   ReLU                    ReLU

    14   'conv3_2'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1]

    15   'relu3_2'   ReLU                    ReLU

    16   'conv3_3'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1]

    17   'relu3_3'   ReLU                    ReLU

    18   'conv3_4'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1]

    19   'relu3_4'   ReLU                    ReLU

    20   'pool3'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]

    21   'conv4_1'   Convolution             512 3x3x256 convolutions with stride [1  1] and padding [1  1]

    22   'relu4_1'   ReLU                    ReLU

    23   'conv4_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1]

    24   'relu4_2'   ReLU                    ReLU

    25   'conv4_3'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1]

    26   'relu4_3'   ReLU                    ReLU

    27   'conv4_4'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1]

    28   'relu4_4'   ReLU                    ReLU

    29   'pool4'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]

    30   'conv5_1'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1]

    31   'relu5_1'   ReLU                    ReLU

    32   'conv5_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1]

    33   'relu5_2'   ReLU                    ReLU

    34   'conv5_3'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1]

    35   'relu5_3'   ReLU                    ReLU

    36   'conv5_4'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1]

    37   'relu5_4'   ReLU                    ReLU

    38   'pool5'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]

    39   'fc6'       Fully Connected         4096 fully connected layer

    40   'relu6'     ReLU                    ReLU

    41   'drop6'     Dropout                 50% dropout

    42   'fc7'       Fully Connected         4096 fully connected layer

    43   'relu7'     ReLU                    ReLU

    44   'drop7'     Dropout                 50% dropout

    45   'fc8'       Fully Connected         1000 fully connected layer

    46   'prob'      Softmax                 softmax

    47   'output'    Classification Output   crossentropyex with 'tench', 'goldfish', and 998 other classes

To view the names of the classes learned by the network, you can view the ClassNames
property of the classification output layer (the final layer). View the first 10 classes by
specifying the first 10 elements.

net.Layers(end).ClassNames(1:10)
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ans =

  10×1 cell array

    'tench'

    'goldfish'

    'great white shark'

    'tiger shark'

    'hammerhead'

    'electric ray'

    'stingray'

    'cock'

    'hen'

    'ostrich'

• “Deep Learning in MATLAB”
• “Pretrained Convolutional Neural Networks”
• “Transfer Learning and Fine-Tuning of Convolutional Neural Networks”
• “Visualize Activations of a Convolutional Neural Network”

Output Arguments

net — Pretrained VGG-19 convolutional neural network
SeriesNetwork object

Pretrained VGG-19 convolutional neural network returned as a SeriesNetwork object.

References

[1] ImageNet. http://www.image-net.org

[2] Russakovsky, O., Deng, J., Su, H., et al. “ImageNet Large Scale Visual Recognition
Challenge.” International Journal of Computer Vision (IJCV). Vol 115, Issue 3,
2015, pp. 211–252

[3] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for
large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

[4] Very Deep Convolutional Networks for Large-Scale Visual Recognition http://
www.robots.ox.ac.uk/~vgg/research/very_deep/
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See Also

See Also
alexnet | deepDreamImage | importCaffeLayers | importCaffeNetwork | vgg16

Topics
“Deep Learning in MATLAB”
“Pretrained Convolutional Neural Networks”
“Transfer Learning and Fine-Tuning of Convolutional Neural Networks”
“Visualize Activations of a Convolutional Neural Network”

Introduced in R2017a
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importCaffeLayers

Import convolutional neural network layers from Caffe

Syntax

layers = importCaffeLayers(protofile)

layers = importCaffeLayers(protofile,'InputSize',sz)

Description

layers = importCaffeLayers(protofile) imports the layers of a network from
Caffe [1] as a Layer array. The function returns the layers defined in the .prototxt
given by the file name protofile.

This function requires Neural Network Toolbox Importer for Caffe Models support
package. If this support package is not installed, the function provides a download link.

You can download pretrained networks from Caffe Model Zoo [2].

layers = importCaffeLayers(protofile,'InputSize',sz) returns a pretrained
network and specifies the size of the input data. If the .prototxt file does not specify
the size of the input data, you must specify the input size.

Examples

Download Importer for Caffe Models Support Package

Download and install Neural Network Toolbox Importer for Caffe Models support
package.

Download the required support package by typing importCaffeLayers at the command
line.

importCaffeLayers

1-808



 importCaffeLayers

If Neural Network Toolbox Importer for Caffe Models support package is not installed,
then the function provides a link to the required support package in the Add-On
Explorer. To install the support package, click the link, and then click Install.

Import Layers from Caffe Network

Specify file to import.

protofile = 'digitsnet.prototxt';

Import network layers.

layers = importCaffeLayers('digitsnet.prototxt')

layers = 

  1x7 Layer array with layers:

     1   'testdata'   Image Input             28x28x1 images

     2   'conv1'      Convolution             20 5x5x1 convolutions with stride [1  1] and padding [0  0]

     3   'relu1'      ReLU                    ReLU

     4   'pool1'      Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]

     5   'ip1'        Fully Connected         10 fully connected layer

     6   'loss'       Softmax                 softmax

     7   'output'     Classification Output   crossentropyex with 'class1', 'class2', and 8 other classes

• “Deep Learning in MATLAB”
• “Pretrained Convolutional Neural Networks”

Input Arguments

protofile — File name
character vector

File name of the .prototxt file containing the network architecture, specified as a
character vector. protofile must be in the current folder, in a folder on the MATLAB
path, or you must include a full or relative path to the file. If the .prototxt file does not
specify the size of the input data, you must specify the size using the sz input argument.

importCaffeLayers can import only the layers of a series network with the following
Caffe layer types:

• Input
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• Data
• Convolution
• ReLU
• Local Response Normalization (LRN)
• Pooling
• Inner Product
• Dropout
• Softmax With Loss
• Euclidean Loss

If the network contains any other type of layer, then the software returns an error.

The function imports only the layers that protofile specifies with the include-phase
TEST. The function ignores any layers that protofile specifies with the include-phase
TRAIN.
Example: 'digitsnet.prototxt'

Data Types: char

sz — Size of input data
row vector

Size of input data, specified as a row vector. Specify a vector of two or three integer
values [h,w], or [h,w,c] corresponding to the height, width, and the number of
channels of the input data.
Example: [28 28 1]

Data Types: double

Output Arguments

layers — Network architecture
layer array

Network architecture, returned as a Layer array. Caffe networks that classify truecolor
images expect a BGR image input. When imported into MATLAB, the image input layer
expects an RGB image input
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References

[1] Caffe. http://caffe.berkeleyvision.org/

[2] Caffe Model Zoo. http://caffe.berkeleyvision.org/model_zoo.html

See Also

See Also
alexnet | importCaffeNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Convolutional Neural Networks”

Introduced in R2017a
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importCaffeNetwork
Import pretrained convolutional neural network models from Caffe

Syntax

net = importCaffeNetwork(protofile,datafile)

net = importCaffeNetwork(protofile,datafile,'InputSize',sz)

net = importCaffeNetwork( ___ ,Name,Value)

Description

net = importCaffeNetwork(protofile,datafile) imports a pretrained network
from Caffe [1] as a SeriesNetwork object. The function returns the pretrained network
with the architecture specified by the .prototxt file protofile and with network
weights specified by the .caffemodel file datafile.

This function requires Neural Network Toolbox Importer for Caffe Models support
package. If this support package is not installed, the function provides a download link.

You can download pretrained networks from Caffe Model Zoo [2].

net = importCaffeNetwork(protofile,datafile,'InputSize',sz) returns a
pretrained network and specifies the size of the input data. If the .prototxt file does
not specify the size of the input data, you must specify the input size.

net = importCaffeNetwork( ___ ,Name,Value) returns a network with additional
options specified by one or more Name,Value pair arguments using any of the previous
syntaxes.

Examples

Download Importer for Caffe Models Support Package

Download and install Neural Network Toolbox Importer for Caffe Models support
package.
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To download the required support package, type importCaffeNetwork at the command
line.

importCaffeNetwork

If Neural Network Toolbox Importer for Caffe Models support package is not installed,
then the function provides a link to the required support package in the Add-On
Explorer. To install the support package, click the link, and then click Install.

Import Caffe Network

Specify files to import.

protofile = 'digitsnet.prototxt';

datafile = 'digits_iter_10000.caffemodel';

Import network.

net = importCaffeNetwork(protofile,datafile)

net = 

  SeriesNetwork with properties:

    Layers: [7×1 nnet.cnn.layer.Layer]

• “Deep Learning in MATLAB”
• “Pretrained Convolutional Neural Networks”

Input Arguments

protofile — File name
character vector

File name of the .prototxt file containing the network architecture, specified as a
character vector. protofile must be in the current folder, in a folder on the MATLAB
path, or you must include a full or relative path to the file.

If the .prototxt file does not specify the size of the input data, you must specify the size
using the sz input argument.

importCaffeNetwork can import only a series network with the following Caffe layer
types:
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• Input
• Data
• Convolution
• ReLU
• Local Response Normalization (LRN)
• Pooling
• Inner Product
• Dropout
• Softmax With Loss
• Euclidean Loss

If the network contains any other type of layer, then the software returns an error.

The function imports only the layers that protofile specifies with the include-phase
TEST. The function ignores any layers that protofile specifies with the include-phase
TRAIN.

The software cannot import a solver definition.
Example: 'digitsnet.prototxt'

Data Types: char

datafile — File name
character vector

File name of the .caffemodel file containing the network weights, specified as a
character vector. datafile must be in the current folder, in a folder on the MATLAB
path, or you must include a full or relative path to the file. To import network layers
without weights, see importCaffeLayers.

Example: 'digits_iter_10000.caffemodel'

Data Types: char

sz — Size of input data
row vector

Size of input data, specified as a row vector. Specify a vector of two or three integer
values [h,w], or [h,w,c] corresponding to the height, width, and the number of
channels of the input data.
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Example: [28 28 1]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
importCaffeNetwork(protofile,datafile,'AverageImage',I,'ClassNames',

{'A','B','C'}) imports a pretrained network using the average image I for zero-
center normalization and specifies the class names to be 'A', 'B', and 'C'.

'AverageImage' — Average image
matrix

Average image for zero-center normalization, specified as a matrix. If you specify an
image, then you must specify an image of the same size as the input data. If you do not
specify an image, the software uses the data specified in the .prototxt file, if present.
Otherwise, the function sets the Normalization property of the image input layer of the
network to 'none'.

Data Types: single

'ClassNames' — Class names
cell array of character vectors

Class names associated with the output layer of the network, specified by a cell array of
character vectors.
Example: {'0','1','2','3','4','5','6','7','8','9'}

Data Types: cell

Output Arguments

net — Imported pretrained Caffe network
series network object
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Imported pretrained Caffe network, returned as a SeriesNetwork object. Caffe
networks that classify truecolor images expect a BGR image input. When imported into
MATLAB, the image input layer expects an RGB image input.

References

[1] Caffe. http://caffe.berkeleyvision.org/

[2] Caffe Model Zoo. http://caffe.berkeleyvision.org/model_zoo.html

See Also

See Also
alexnet | importCaffeLayers | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Convolutional Neural Networks”

Introduced in R2017a
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